Suppr超能文献

脑干疼痛调制回路及其在神经性疼痛中的可塑性:来自人脑成像研究的见解

Brainstem Pain-Modulation Circuitry and Its Plasticity in Neuropathic Pain: Insights From Human Brain Imaging Investigations.

作者信息

Mills Emily P, Keay Kevin A, Henderson Luke A

机构信息

Brain and Mind Centre, School of Medical Sciences (Neuroscience), University of Sydney, Sydney, NSW, Australia.

出版信息

Front Pain Res (Lausanne). 2021 Jul 30;2:705345. doi: 10.3389/fpain.2021.705345. eCollection 2021.

Abstract

Acute pain serves as a protective mechanism that alerts us to potential tissue damage and drives a behavioural response that removes us from danger. The neural circuitry critical for mounting this behavioural response is situated within the brainstem and is also crucial for producing analgesic and hyperalgesic responses. In particular, the periaqueductal grey, rostral ventromedial medulla, locus coeruleus and subnucleus reticularis dorsalis are important structures that directly or indirectly modulate nociceptive transmission at the primary nociceptive synapse. Substantial evidence from experimental animal studies suggests that plasticity within this system contributes to the initiation and/or maintenance of chronic neuropathic pain, and may even predispose individuals to developing chronic pain. Indeed, overwhelming evidence indicates that plasticity within this circuitry favours pro-nociception at the primary synapse in neuropathic pain conditions, a process that ultimately contributes to a hyperalgesic state. Although experimental animal investigations have been crucial in our understanding of the anatomy and function of the brainstem pain-modulation circuitry, it is vital to understand this system in acute and chronic pain states in humans so that more effective treatments can be developed. Recent functional MRI studies have identified a key role of this system during various analgesic and hyperalgesic responses including placebo analgesia, offset analgesia, attentional analgesia, conditioned pain modulation, central sensitisation and temporal summation. Moreover, recent MRI investigations have begun to explore brainstem pain-modulation circuitry plasticity in chronic neuropathic pain conditions and have identified altered grey matter volumes and functioning throughout the circuitry. Considering the findings from animal investigations, it is likely that these changes reflect a shift towards pro-nociception that ultimately contributes to the maintenance of neuropathic pain. The purpose of this review is to provide an overview of the human brain imaging investigations that have improved our understanding of the pain-modulation system in acute pain states and in neuropathic conditions. Our interpretation of the findings from these studies is often guided by the existing body of experimental animal literature, in addition to evidence from psychophysical investigations. Overall, understanding the plasticity of this system in human neuropathic pain conditions alongside the existing experimental animal literature will ultimately improve treatment options.

摘要

急性疼痛是一种保护机制,它提醒我们注意潜在的组织损伤,并引发一种行为反应,使我们远离危险。引发这种行为反应的关键神经回路位于脑干内,对于产生镇痛和痛觉过敏反应也至关重要。特别是,导水管周围灰质、延髓头端腹内侧、蓝斑和背侧网状核是重要结构,它们直接或间接调节初级伤害性突触处的伤害性信息传递。实验动物研究的大量证据表明,该系统内的可塑性有助于慢性神经性疼痛的起始和/或维持,甚至可能使个体易患慢性疼痛。事实上,压倒性的证据表明,在神经性疼痛状态下,该神经回路内的可塑性有利于初级突触处的促伤害感受,这一过程最终导致痛觉过敏状态。尽管实验动物研究对于我们理解脑干疼痛调制回路的解剖结构和功能至关重要,但了解人类急性和慢性疼痛状态下的这个系统对于开发更有效的治疗方法至关重要。最近的功能磁共振成像研究已经确定了该系统在各种镇痛和痛觉过敏反应中的关键作用,包括安慰剂镇痛、抵消镇痛、注意力镇痛、条件性疼痛调制、中枢敏化和时间总和。此外,最近的磁共振成像研究已经开始探索慢性神经性疼痛状态下脑干疼痛调制回路的可塑性,并确定了整个回路中灰质体积和功能的改变。考虑到动物研究的结果,这些变化可能反映了向促伤害感受的转变,最终导致神经性疼痛的维持。这篇综述的目的是概述人类脑成像研究,这些研究增进了我们对急性疼痛状态和神经性疼痛状态下疼痛调制系统的理解。我们对这些研究结果的解释通常以现有的实验动物文献为指导,此外还有来自心理物理学研究的证据。总体而言,了解该系统在人类神经性疼痛状态下的可塑性以及现有的实验动物文献最终将改善治疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f188/8915745/57cc78159f5e/fpain-02-705345-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验