Kang Chun Hong, Alkhazragi Omar, Sinatra Lutfan, Alshaibani Sultan, Wang Yue, Li Kuang-Hui, Kong Meiwei, Lutfullin Marat, Bakr Osman M, Ng Tien Khee, Ooi Boon S
Opt Express. 2022 Mar 14;30(6):9823-9840. doi: 10.1364/OE.452370.
The use of optical carrier frequencies will enable seamless data connection for future terrestrial and underwater internet uses and will resolve the technological gap faced by other communication modalities. However, several issues must be solved to propel this technological shift, which include the limitations in designing optical receivers with large detection areas, omnidirectionality, and high modulation bandwidth, mimicking antennas operating in the radio-frequency spectrum. To address this technological gap, herein, we demonstrate halide-perovskite-polymer-based scintillating fibers as a near-omnidirectional detection platform for several tens-to-hundreds of Mbit/s optical communication in both free space and underwater links. The incorporation of all-inorganic CsPbBr nanocrystals by engineering the nanocrystal concentration in an ultraviolet-curable polymer matrix ensures a high photoluminescence quantum yield, Mega-Hertz modulation bandwidth and Mbit/s data rate suitable to be used as a high-speed fibers-based receiver. The resultant perovskite polymer-based scintillating fibers offer flexibility in terms of shape and near-omnidirectional detection features. Such fiber properties also introduce a scalable detection area which can resolve the resistance-capacitance and angle-of-acceptance limits in planar-based detectors, which conventionally impose a trade-off between the modulation bandwidth, detection area, and angle of view. A high bit rate of 23 Mbit/s and 152.5 Mbit/s was achieved using an intensity-modulated laser for non-return-to-zero on-off-keying (NRZ-OOK) modulation scheme in free-space and quadrature amplitude modulation orthogonal frequency-division multiplexing (QAM-OFDM) modulation scheme in an underwater environment, respectively. Our near-omnidirectional optical-based antenna based on perovskite-polymer-based scintillating fibers sheds light on the immense possibilities of incorporating functional nanomaterials for empowering light-based terrestrial- and underwater-internet systems.
光学载波频率的使用将为未来的地面和水下互联网应用实现无缝数据连接,并解决其他通信方式所面临的技术差距。然而,要推动这一技术转变,必须解决几个问题,其中包括在设计具有大检测面积、全向性和高调制带宽的光接收器时所面临的限制,这些接收器要模仿在射频频谱中工作的天线。为了解决这一技术差距,在此我们展示了基于卤化物钙钛矿-聚合物的闪烁光纤,作为一种近全向检测平台,用于在自由空间和水下链路中实现数十至数百兆比特每秒的光通信。通过在紫外可固化聚合物基质中设计纳米晶体浓度来掺入全无机CsPbBr纳米晶体,可确保高的光致发光量子产率、兆赫兹调制带宽和适合用作基于光纤的高速接收器的兆比特每秒数据速率。由此产生的基于钙钛矿聚合物的闪烁光纤在形状和近全向检测特性方面具有灵活性。这种光纤特性还引入了一个可扩展的检测面积,该检测面积可以解决基于平面的探测器中的电阻-电容和接受角限制,传统上这些限制在调制带宽、检测面积和视角之间存在权衡。在自由空间中使用强度调制激光进行非归零开关键控(NRZ-OOK)调制方案,以及在水下环境中使用正交幅度调制正交频分复用(QAM-OFDM)调制方案,分别实现了23兆比特每秒和152.5兆比特每秒的高比特率。我们基于钙钛矿聚合物闪烁光纤的近全向光学天线揭示了纳入功能性纳米材料以增强基于光的地面和水下互联网系统的巨大可能性。