Zhu Xin, Wang Yue, Nadinov Issatay, Thomas Simil, Gutiérrez-Arzaluz Luis, He Tengyue, Wang Jian-Xin, Alkhazragi Omar, Ng Tien Khee, Bakr Osman M, Alshareef Husam N, Ooi Boon S, Mohammed Omar F
Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
Photonics Laboratory, Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
J Phys Chem Lett. 2024 Mar 21;15(11):2988-2994. doi: 10.1021/acs.jpclett.4c00268. Epub 2024 Mar 8.
Intermolecular charge transfer (CT) complexes have emerged as versatile platforms with customizable optical properties that play a pivotal role in achieving tunable photoresponsive materials. In this study, we introduce an innovative approach for enhancing the modulation bandwidth and net data rates in optical wireless communications (OWCs) by manipulating combinations of monomeric molecules within intermolecular CT complexes. Concurrently, we extensively investigate the intermolecular charge transfer mechanism through diverse steady-state and ultrafast time-resolved spectral techniques in the mid-infrared range complemented by theoretical calculations using density functional theory. These intermolecular CT complexes empower precise control over the -3 dB bandwidth and net data rates in OWC applications. The resulting color converters exhibit promising performance, achieving a net data rate of ∼100 Mb/s, outperforming conventional materials commonly used in the manufacture of OWC devices. This research underscores the substantial potential of engineering intermolecular charge transfer complexes as an ongoing progression and commercialization within the OWC. This carries profound implications for future initiatives in high-speed and secure data transmission, paving the way for promising endeavors in this area.
分子间电荷转移(CT)复合物已成为具有可定制光学特性的多功能平台,在实现可调谐光响应材料方面发挥着关键作用。在本研究中,我们介绍了一种创新方法,通过操纵分子间CT复合物内单体分子的组合来提高光无线通信(OWC)中的调制带宽和净数据速率。同时,我们通过多种稳态和超快时间分辨光谱技术,在中红外范围内对分子间电荷转移机制进行了广泛研究,并辅以使用密度泛函理论的理论计算。这些分子间CT复合物能够在OWC应用中精确控制-3 dB带宽和净数据速率。由此产生的颜色转换器表现出令人鼓舞的性能,实现了约100 Mb/s的净数据速率,优于常用于制造OWC设备的传统材料。这项研究强调了设计分子间电荷转移复合物作为OWC领域不断发展和商业化的巨大潜力。这对未来高速和安全数据传输的举措具有深远意义,为该领域的有前景的努力铺平了道路。