Suppr超能文献

一种用于膀胱尿路上皮癌的新型肿瘤微环境预后标志物的鉴定。

Identification of a Novel Tumor Microenvironment Prognostic Signature for Bladder Urothelial Carcinoma.

作者信息

Xu Chaojie, Pei Dongchen, Liu Yi, Yu Yang, Guo Jinhua, Liu Nan, Kang Zhengjun

机构信息

Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.

出版信息

Front Oncol. 2022 Mar 1;12:818860. doi: 10.3389/fonc.2022.818860. eCollection 2022.

Abstract

BACKGROUND

The tumor microenvironment (TME) regulates the proliferation and metastasis of solid tumors and the effectiveness of immunotherapy against them. We investigated the prognostic role of TME-related genes based on transcriptomic data of bladder urothelial carcinoma (BLCA) and formulated a prediction model of TME-related signatures.

METHODS

Molecular subtypes were identified using the non-negative matrix factorization (NMF) algorithm based on TME-related genes from the TCGA database. TME-related genes with prognostic significance were screened with univariate Cox regression analysis and lasso regression. Nomogram was developed based on risk genes. Receiver operating characteristic (ROC) curve and decision curve analysis (DCA) were used for inner and outer validation of the model. Risk scores (RS) of patients were calculated and divided into high-risk group (HRG) and low-risk group (LRG) to compare the differences in clinical characteristics and PD-L1 treatment responsiveness between HRG and LRG.

RESULTS

We identified two molecular subtypes (C1 and C2) according to the NMF algorithm. There were significant differences in overall survival (OS) (p<0.05), progression-free survival (PFS) (p<0.05), and immune cell infiltration between the two subtypes. A total of eight TME-associated genes (, , , , , , , ) with independent prognostic significance were screened to build prognostic risk models. Age (p<0.001), grade (p<0.001), and RS (p<0.001) were independent predictors of survival in BLCA patients. The developed RS nomogram was able to predict the prognosis of BLCA patients at 1, 3, and 5 years more potentially than the models of other investigators according to ROC and DCA. RS showed significantly higher values (p = 0.047) in patients with stable disease (SD)/progressive disease (PD) compared to patients with complete response (CR)/partial response (PR).

CONCLUSIONS

We successfully clustered and constructed predictive models for TME-associated genes and helped guide immunotherapy strategies.

摘要

背景

肿瘤微环境(TME)调节实体瘤的增殖和转移以及针对实体瘤的免疫治疗效果。我们基于膀胱尿路上皮癌(BLCA)的转录组数据研究了TME相关基因的预后作用,并构建了TME相关特征的预测模型。

方法

使用非负矩阵分解(NMF)算法,基于来自TCGA数据库的TME相关基因确定分子亚型。通过单变量Cox回归分析和套索回归筛选具有预后意义的TME相关基因。基于风险基因构建列线图。采用受试者工作特征(ROC)曲线和决策曲线分析(DCA)对模型进行内部和外部验证。计算患者的风险评分(RS),并将其分为高风险组(HRG)和低风险组(LRG),以比较HRG和LRG之间的临床特征和PD-L1治疗反应性差异。

结果

根据NMF算法,我们确定了两种分子亚型(C1和C2)。两种亚型在总生存期(OS)(p<0.05)、无进展生存期(PFS)(p<0.05)和免疫细胞浸润方面存在显著差异。共筛选出8个具有独立预后意义的TME相关基因(,,,,,,,),构建预后风险模型。年龄(p<0.001)、分级(p<0.001)和RS(p<0.001)是BLCA患者生存的独立预测因素。根据ROC和DCA,所构建的RS列线图比其他研究者的模型更能预测BLCA患者1年、3年和5年的预后。与完全缓解(CR)/部分缓解(PR)的患者相比,疾病稳定(SD)/疾病进展(PD)的患者RS值显著更高(p = 0.047)。

结论

我们成功地对TME相关基因进行了聚类并构建了预测模型,有助于指导免疫治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cefe/8921452/c4c35bab1c5a/fonc-12-818860-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验