Suppr超能文献

单细胞转录组复制品的无偏整合。

Unbiased integration of single cell transcriptome replicates.

作者信息

Loza Martin, Teraguchi Shunsuke, Standley Daron M, Diez Diego

机构信息

Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan.

出版信息

NAR Genom Bioinform. 2022 Mar 15;4(1):lqac022. doi: 10.1093/nargab/lqac022. eCollection 2022 Mar.

Abstract

Single cell transcriptomic approaches are becoming mainstream, with replicate experiments commonly performed with the same single cell technology. Methods that enable integration of these datasets by removing batch effects while preserving biological information are required for unbiased data interpretation. Here, we introduce Canek for this purpose. Canek leverages information from mutual nearest neighbor to combine local linear corrections with cell-specific non-linear corrections within a fuzzy logic framework. Using a combination of real and synthetic datasets, we show that Canek corrects batch effects while introducing the least amount of bias compared with competing methods. Canek is computationally efficient and can easily integrate thousands of single-cell transcriptomes from replicated experiments.

摘要

单细胞转录组学方法正逐渐成为主流,通常使用相同的单细胞技术进行重复实验。为了进行无偏数据解释,需要能够通过消除批次效应同时保留生物信息来整合这些数据集的方法。为此,我们引入了Canek。Canek利用相互最近邻的信息,在模糊逻辑框架内将局部线性校正与细胞特异性非线性校正相结合。通过真实和合成数据集的组合,我们表明与竞争方法相比,Canek在引入最少偏差的同时校正了批次效应。Canek计算效率高,能够轻松整合来自重复实验的数千个单细胞转录组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/febb/8923008/e0e7993a213d/lqac022fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验