Suppr超能文献

深层森林土壤层的鸟枪法宏基因组学显示了生物地球化学循环中微生物遗传潜力改变的证据。

Shotgun Metagenomics of Deep Forest Soil Layers Show Evidence of Altered Microbial Genetic Potential for Biogeochemical Cycling.

作者信息

Frey Beat, Varliero Gilda, Qi Weihong, Stierli Beat, Walthert Lorenz, Brunner Ivano

机构信息

Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.

Centre for Microbial Ecology and Genomics, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.

出版信息

Front Microbiol. 2022 Mar 1;13:828977. doi: 10.3389/fmicb.2022.828977. eCollection 2022.

Abstract

Soil microorganisms such as Bacteria and Archaea play important roles in the biogeochemical cycling of soil nutrients, because they act as decomposers or are mutualistic or antagonistic symbionts, thereby influencing plant growth and health. In the present study, we investigated the vertical distribution of soil metagenomes to a depth of 1.5 m in Swiss forests of European beech and oak species on calcareous bedrock. We explored the functional genetic potential of soil microorganisms with the aim to disentangle the effects of tree genus and soil depth on the genetic repertoire, and to gain insight into the microbial C and N cycling. The relative abundance of reads assigned to taxa at the domain level indicated a 5-10 times greater abundance of Archaea in the deep soil, while Bacteria showed no change with soil depth. In the deep soil there was an overrepresentation of genes for carbohydrate-active enzymes, which are involved in the catalyzation of the transfer of oligosaccharides, as well as in the binding of carbohydrates such as chitin or cellulose. In addition, N-cycling genes (NCyc) involved in the degradation and synthesis of N compounds, in nitrification and denitrification, and in nitrate reduction were overrepresented in the deep soil. Consequently, our results indicate that N-transformation in the deep soil is affected by soil depth and that N is used not only for assimilation but also for energy conservation, thus indicating conditions of low oxygen in the deep soil. Using shotgun metagenomics, our study provides initial findings on soil microorganisms and their functional genetic potential, and how this may change depending on soil properties, which shift with increasing soil depth. Thus, our data provide novel, deeper insight into the "dark matter" of the soil.

摘要

细菌和古菌等土壤微生物在土壤养分的生物地球化学循环中发挥着重要作用,因为它们充当分解者,或是互利共生或拮抗共生体,从而影响植物的生长和健康。在本研究中,我们调查了瑞士钙质基岩上欧洲山毛榉和橡树森林中土壤宏基因组至1.5米深度的垂直分布。我们探索了土壤微生物的功能遗传潜力,目的是理清树种和土壤深度对基因库的影响,并深入了解微生物的碳和氮循环。在域水平上,分配给分类群的读数相对丰度表明,深层土壤中古菌的丰度高5至10倍,而细菌的丰度随土壤深度没有变化。在深层土壤中,参与催化寡糖转移以及结合几丁质或纤维素等碳水化合物的碳水化合物活性酶的基因过度表达。此外,参与氮化合物降解和合成、硝化和反硝化以及硝酸盐还原的氮循环基因(NCyc)在深层土壤中也过度表达。因此,我们的结果表明,深层土壤中的氮转化受土壤深度影响,氮不仅用于同化,还用于能量守恒,从而表明深层土壤中氧气含量较低。通过鸟枪法宏基因组学,我们的研究提供了关于土壤微生物及其功能遗传潜力的初步发现,以及这可能如何随土壤性质而变化,土壤性质会随着土壤深度的增加而改变。因此,我们的数据为土壤的“暗物质”提供了新的、更深入的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11fa/8921678/58271d1fae97/fmicb-13-828977-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验