Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
Functional Genomics Center of the University of Zurich and the ETH Zurich, Zurich, Switzerland.
Microb Genom. 2021 Apr;7(4). doi: 10.1099/mgen.0.000558.
The warming-induced thawing of permafrost promotes microbial activity, often resulting in enhanced greenhouse gas emissions. The ability of permafrost microorganisms to survive the sub-zero temperatures, their energetic strategies and their metabolic versatility in using soil organic materials determine their growth and functionality upon thawing. Hence, functional characterization of the permafrost microbiome, particularly in the underexplored mid-latitudinal alpine regions, is a crucial first step in predicting its responses to the changing climate, and the consequences for soil-climate feedbacks. In this study, for the first time, the functional potential and metabolic capabilities of a temperate mountain permafrost microbiome from central Europe has been analysed using shotgun metagenomics. Permafrost and active layers from the summit of Muot da Barba Peider (MBP) [Swiss Alps, 2979 m above sea level (a.s.l.)] revealed a strikingly high functional diversity in the permafrost (north-facing soils at a depth of 160 cm). Permafrost metagenomes were enriched in stress-response genes (e.g. cold-shock genes, chaperones), as well as in genes involved in cell defence and competition (e.g. antiviral proteins, antibiotics, motility, nutrient-uptake ABC transporters), compared with active-layer metagenomes. Permafrost also showed a higher potential for the synthesis of carbohydrate-active enzymes, and an overrepresentation of genes involved in fermentation, carbon fixation, denitrification and nitrogen reduction reactions. Collectively, these findings demonstrate the potential capabilities of permafrost microorganisms to thrive in cold and oligotrophic conditions, and highlight their metabolic versatility in carbon and nitrogen cycling. Our study provides a first insight into the high functional gene diversity of the central European mountain permafrost microbiome. Our findings extend our understanding of the microbial ecology of permafrost and represent a baseline for future investigations comparing the functional profiles of permafrost microbial communities at different latitudes.
由于土壤有机物质的存在,多年冻土中的微生物能够在超低温下生存,具有旺盛的活力,并且在代谢方面具有很强的多样性,这决定了它们在解冻后的生长和功能。因此,对多年冻土微生物组进行功能特征分析,特别是在中纬度高山地区,是预测其对气候变化响应的关键的第一步,也是土壤-气候反馈的关键。在这项研究中,首次利用鸟枪法宏基因组学分析了来自中欧的一个温带山地多年冻土微生物组的功能潜力和代谢能力。从 Muot da Barba Peider(MBP)山顶采集的多年冻土和活动层(瑞士阿尔卑斯山,海拔 2979 米),揭示了多年冻土(北坡土壤,深度为 160 厘米)中具有极高的功能多样性。与活动层宏基因组相比,多年冻土宏基因组富含应激反应基因(如冷休克基因、伴侣蛋白),以及细胞防御和竞争相关基因(如抗病毒蛋白、抗生素、运动性、养分摄取 ABC 转运蛋白)。多年冻土在合成碳水化合物活性酶方面也具有更高的潜力,并且在发酵、碳固定、反硝化和氮还原反应中涉及的基因也存在过表达。总的来说,这些发现表明了多年冻土微生物在寒冷和贫营养条件下茁壮成长的潜在能力,并强调了它们在碳和氮循环中的代谢多样性。我们的研究提供了对中欧高山多年冻土微生物组高功能基因多样性的初步了解。我们的发现扩展了对多年冻土微生物生态学的理解,并为未来在不同纬度比较多年冻土微生物群落的功能谱的研究提供了基线。