Parada Walter A, Vasilyev Dmitry V, Mayrhofer Karl J J, Katsounaros Ioannis
Helmholtz-Institut Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany.
Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
ACS Appl Mater Interfaces. 2022 Mar 30;14(12):14193-14201. doi: 10.1021/acsami.1c24386. Epub 2022 Mar 18.
Ionic liquids (ILs) are capable of tuning the kinetics of electroreduction processes by modifying a catalyst interface. In this work, a group of hydrophobic imidazolium-based ILs were immobilized on Ag foams by using a procedure known as "solid catalyst with ionic liquid layer" (SCILL). The derived electrocatalysts demonstrated altered selectivity and CO production rates for the electrochemical reduction of CO compared to the unmodified Ag foam. The activity change caused by the IL was dependent on the length of the -alkyl substituent. The rate of CO production is optimized at moderate chain length and IL loadings. The observed trends are attributed to a local enrichment of CO-based species in the proximity of the catalyst and a modification of the environment of its active sites. On the contrary, high loadings or long IL chains render the surface inaccessible and favor the hydrogen evolution reaction.
离子液体(ILs)能够通过修饰催化剂界面来调节电还原过程的动力学。在这项工作中,通过一种称为“带有离子液体层的固体催化剂”(SCILL)的方法,将一组疏水性咪唑基离子液体固定在泡沫银上。与未改性的泡沫银相比,所得的电催化剂在电化学还原CO时表现出改变的选择性和CO生成速率。由离子液体引起的活性变化取决于-烷基取代基的长度。在中等链长和离子液体负载量下,CO生成速率得到优化。观察到的趋势归因于催化剂附近基于CO的物种的局部富集及其活性位点环境的改变。相反,高负载量或长离子液体链会使表面难以接近,并有利于析氢反应。