Suppr超能文献

理解咪唑基离子液体在电化学CO还原反应中的作用。

Understanding the role of imidazolium-based ionic liquids in the electrochemical CO reduction reaction.

作者信息

Fortunati Alessia, Risplendi Francesca, Re Fiorentin Michele, Cicero Giancarlo, Parisi Emmanuele, Castellino Micaela, Simone Elena, Iliev Boyan, Schubert Thomas J S, Russo Nunzio, Hernández Simelys

机构信息

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.

Iolitec Ionic Liquids Technologies GmbH, Im Zukunftspark 9, 74076, Heilbronn, Germany.

出版信息

Commun Chem. 2023 Apr 29;6(1):84. doi: 10.1038/s42004-023-00875-9.

Abstract

The development of efficient CO capture and utilization technologies driven by renewable energy sources is mandatory to reduce the impact of climate change. Herein, seven imidazolium-based ionic liquids (ILs) with different anions and cations were tested as catholytes for the CO electrocatalytic reduction to CO over Ag electrode. Relevant activity and stability, but different selectivities for CO reduction or the side H evolution were observed. Density functional theory results show that depending on the IL anions the CO is captured or converted. Acetate anions (being strong Lewis bases) enhance CO capture and H evolution, while fluorinated anions (being weaker Lewis bases) favour the CO electroreduction. Differently from the hydrolytically unstable 1-butyl-3-methylimidazolium tetrafluoroborate, 1-Butyl-3-Methylimidazolium Triflate was the most promising IL, showing the highest Faradaic efficiency to CO (>95%), and up to 8 h of stable operation at high current rates (-20 mA & -60 mA), which opens the way for a prospective process scale-up.

摘要

开发由可再生能源驱动的高效CO捕获和利用技术对于减少气候变化的影响至关重要。在此,测试了七种具有不同阴离子和阳离子的咪唑基离子液体(ILs)作为阴极电解液,用于在Ag电极上进行CO电催化还原为CO。观察到了相关的活性和稳定性,但对于CO还原或副反应析氢具有不同的选择性。密度泛函理论结果表明,根据IL阴离子的不同,CO会被捕获或转化。醋酸根阴离子(作为强路易斯碱)增强了CO捕获和析氢,而氟化阴离子(作为较弱的路易斯碱)有利于CO电还原。与水解不稳定的1-丁基-3-甲基咪唑四氟硼酸盐不同,1-丁基-3-甲基咪唑三氟甲磺酸盐是最有前景的IL,对CO表现出最高的法拉第效率(>95%),并且在高电流密度(-20 mA和-60 mA)下可稳定运行长达8小时,这为未来的工艺放大开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c1/10148827/e25c7dd005c7/42004_2023_875_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验