Suppr超能文献

维持电子转移途径可使生物杂化光电极的稳定性延长至数年。

Sustaining Electron Transfer Pathways Extends Biohybrid Photoelectrode Stability to Years.

机构信息

Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam, 1081 HV, The Netherlands.

Electrobiotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany.

出版信息

Angew Chem Int Ed Engl. 2022 Jun 13;61(24):e202201148. doi: 10.1002/anie.202201148. Epub 2022 Apr 19.

Abstract

The exploitation of natural photosynthetic enzymes in semi-artificial devices constitutes an attractive and potentially sustainable route for the conversion of solar energy into electricity and solar fuels. However, the stability of photosynthetic proteins after incorporation in a biohybrid architecture typically limits the operational lifetime of biophotoelectrodes to a few hours. Here, we demonstrate ways to greatly enhance the stability of a mesoporous electrode coated with the RC-LH1 photoprotein from Rhodobacter sphaeroides. By preserving electron transfer pathways, we extended operation under continuous high-light to 33 days, and operation after storage to over two years. Coupled with large photocurrents that reached peak values of 4.6 mA cm , the optimized biophotoelectrode produced a cumulative output of 86 C cm , the largest reported performance to date. Our results demonstrate that the factor limiting stability is the architecture surrounding the photoprotein, and that biohybrid sensors and photovoltaic devices with operational lifetimes of years are feasible.

摘要

利用天然光合作用酶在半人工设备中进行转化,将太阳能转化为电能和太阳能燃料,这是一种极具吸引力且具有潜在可持续性的方法。然而,将光合作用蛋白整合到生物混合架构中后,其稳定性通常会将生物光电管的工作寿命限制在几个小时内。在这里,我们展示了几种方法,可以极大地提高 Rhodobacter sphaeroides 中 RC-LH1 光蛋白修饰的介孔电极的稳定性。通过保留电子转移途径,我们将连续高光下的运行时间延长至 33 天,并且在储存后的运行时间超过两年。与达到 4.6 mA·cm 的峰值光电流相结合,优化后的生物光电管产生了 86 C·cm 的累积输出,这是迄今为止报道的最大性能。我们的研究结果表明,限制稳定性的因素是围绕光蛋白的结构,并且具有数年工作寿命的生物混合传感器和光伏器件是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef9/9324148/d73c665a6a2e/ANIE-61-0-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验