Wang Yingqi, Liu Cunming, Ren Yang, Zuo Xiaobing, Canton Sophie E, Zheng Kaibo, Lu Kuangda, Lü Xujie, Yang Wenge, Zhang Xiaoyi
Center for High Pressure Science & Technology Advanced Research, 1690 Cailun Rd, Pudong, Shanghai 201203, China.
X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States.
J Am Chem Soc. 2022 Mar 30;144(12):5335-5341. doi: 10.1021/jacs.1c11747. Epub 2022 Mar 18.
Metal halide perovskites have emerged as promising materials for optoelectronic applications in the last decade. A large amount of effort has been made to investigate the interplay between the crystalline lattice and photoexcited charge carriers as it is vital to their optoelectronic performance. Among them, ultrafast laser spectroscopy has been intensively utilized to explore the charge carrier dynamics of perovskites, from which the local structural information can only be extracted indirectly. Here, we have applied a time-resolved X-ray diffraction technique to investigate the structural dynamics of prototypical two-dimensional lead-free halide perovskite CsBiBr nanoparticles across temporal scales from 80 ps to microseconds. We observed a quick recoverable (a few ns) photoinduced microstrain up to 0.15% and a long existing lattice expansion (∼a few hundred nanoseconds) at mild laser fluence. Once the laser flux exceeds 1.4 mJ/cm, the microstrain saturates and the crystalline phase partially transfers into a disordered phase. This photoinduced transient structural change can recover within the nanosecond time scale. These results indicate that photoexcitation of charge carriers couples with lattice distortion, which fundamentally affects the dielectric environment and charge carrier transport.
在过去十年中,金属卤化物钙钛矿已成为光电子应用领域颇具前景的材料。人们已付出大量努力来研究晶格与光激发电荷载流子之间的相互作用,因为这对它们的光电子性能至关重要。其中,超快激光光谱已被广泛用于探索钙钛矿的电荷载流子动力学,从中只能间接提取局部结构信息。在此,我们应用了时间分辨X射线衍射技术,来研究典型二维无铅卤化物钙钛矿CsBiBr纳米颗粒在从80皮秒到微秒的时间尺度上的结构动力学。我们观察到在适度激光能量密度下,存在高达0.15%的快速可恢复(几纳秒)光致微应变以及长时间存在的晶格膨胀(约几百纳秒)。一旦激光通量超过1.4 mJ/cm,微应变就会饱和,并且晶相部分转变为无序相。这种光致瞬态结构变化可在纳秒时间尺度内恢复。这些结果表明,电荷载流子的光激发与晶格畸变相互耦合,这从根本上影响了介电环境和电荷载流子传输。