Suppr超能文献

结合机器学习和卫星观测预测北美国际城市近地表 OH 的时空变化。

Combining Machine Learning and Satellite Observations to Predict Spatial and Temporal Variation of near Surface OH in North American Cities.

机构信息

Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, California 94720, United States.

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States.

出版信息

Environ Sci Technol. 2022 Jun 7;56(11):7362-7371. doi: 10.1021/acs.est.1c05636. Epub 2022 Mar 18.

Abstract

The hydroxyl radical (OH) is the primary cleansing agent in the atmosphere. The abundance of OH in cities initiates the removal of local pollutants; therefore, it serves as the key species describing the urban chemical environment. We propose a machine learning (ML) approach as an efficient alternative to OH simulation using a computationally expensive chemical transport model. The ML model is trained on the parameters simulated from the WRF-Chem model, and it suggests that six predictive parameters are capable of explaining 76% of the OH variability. The parameters are the tropospheric NO column, the tropospheric HCHO column, J(OD), HO, temperature, and pressure. We then use observations of the tropospheric NO column and HCHO column from OMI as input to the ML model to enable measurement-based prediction of daily near surface OH at 1:30 pm local time across 49 North American cities over the course of 10 years between 2005 and 2014. The result is validated by comparing the OH predictions to measurements of isoprene, which has a source that is uncorrelated with OH and is removed rapidly and almost exclusively by OH in the daytime. We demonstrate that the predicted OH is, as expected, anticorrelated with isoprene. We also show that this ML model is consistent with our understanding of OH chemistry given the solely data-driven nature.

摘要

羟基自由基 (OH) 是大气中的主要清洁剂。OH 在城市中的丰富度引发了当地污染物的去除,因此它是描述城市化学环境的关键物种。我们提出了一种机器学习 (ML) 方法,作为使用计算成本高昂的化学输送模型模拟 OH 的有效替代方法。ML 模型是基于 WRF-Chem 模型模拟的参数进行训练的,结果表明,六个预测参数能够解释 76%的 OH 变化。这些参数是对流层 NO 柱、对流层 HCHO 柱、J(OD)、HO、温度和压力。然后,我们使用 OMI 的对流层 NO 柱和 HCHO 柱观测值作为输入,将 ML 模型用于测量基础预测,以实现对 2005 年至 2014 年 10 年间北美 49 个城市 1 点 30 分当地时间近地面 OH 的每日预测。通过将 OH 预测与异戊二烯的测量值进行比较来验证结果,异戊二烯的来源与 OH 无关,并且在白天几乎完全被 OH 去除。我们证明了预测的 OH 与异戊二烯呈负相关,这是意料之中的。我们还表明,鉴于该 ML 模型完全基于数据驱动的性质,它与我们对 OH 化学的理解是一致的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验