Suppr超能文献

气候塑造了温带开花植物的种子萌发生态位:对欧洲种子保护数据的荟萃分析。

Climate shapes the seed germination niche of temperate flowering plants: a meta-analysis of European seed conservation data.

机构信息

Department of Biology, Botany Unit, University of Pisa, Pisa, Italy.

CIRSEC - Centre for Climate Change Impact, University of Pisa, Pisa, Italy.

出版信息

Ann Bot. 2022 Jul 18;129(7):775-786. doi: 10.1093/aob/mcac037.

Abstract

BACKGROUND AND AIMS

Interactions between ecological factors and seed physiological responses during the establishment phase shape the distribution of plants. Yet, our understanding of the functions and evolution of early-life traits has been limited by the scarcity of large-scale datasets. Here, we tested the hypothesis that the germination niche of temperate plants is shaped by their climatic requirements and phylogenetic relatedness, using germination data sourced from a comprehensive seed conservation database of the European flora (ENSCOBASE).

METHODS

We performed a phylogenetically informed Bayesian meta-analysis of primary data, considering 18 762 germination tests of 2418 species from laboratory experiments conducted across all European geographical regions. We tested for the interaction between species' climatic requirements and germination responses to experimental conditions including temperature, alternating temperature, light and dormancy-breaking treatments, while accounting for between-study variation related to seed sources and seed lot physiological status.

KEY RESULTS

Climate was a strong predictor of germination responses. In warm and seasonally dry climates the seed germination niche includes a cold-cued germination response and an inhibition determined by alternating temperature regimes and cold stratification, while in climates with high temperature seasonality opposite responses can be observed. Germination responses to scarification and light were related to seed mass but not to climate. We also found a significant phylogenetic signal in the response of seeds to experimental conditions, providing evidence that the germination niche is phylogenetically constrained. Nevertheless, phylogenetically distant lineages exhibited common germination responses under similar climates.

CONCLUSION

This is the first quantitative meta-analysis of the germination niche at a continental scale. Our findings showed that the germination niches of European plants exhibit evolutionary convergence mediated by strong pressures at the macroclimatic level. In addition, our methodological approach highlighted how large datasets generated by conservation seed banking can be valuable sources to address questions in plant macroecology and evolution.

摘要

背景与目的

在建立阶段,生态因素与种子生理反应之间的相互作用塑造了植物的分布。然而,由于大规模数据集的稀缺,我们对早期生命特征的功能和进化的理解受到了限制。在这里,我们使用来自欧洲植物种子保护数据库(ENSCOBASE)的综合种子保存数据,检验了温带植物的萌发生态位是由其气候需求和系统发育关系所决定的假设。

方法

我们对来自实验室实验的 2418 个物种的 18762 个萌发测试的原始数据进行了基于系统发育的贝叶斯元分析,这些实验在欧洲所有地理区域进行。我们检验了物种的气候需求与对实验条件(包括温度、交替温度、光照和打破休眠处理)的萌发反应之间的相互作用,同时考虑了与种子来源和种子批生理状态有关的研究间变异。

主要结果

气候是萌发反应的一个强有力的预测因子。在温暖且季节性干燥的气候下,种子萌发生态位包括一个由低温引发的萌发反应和一个由交替温度模式和低温层积决定的抑制反应,而在高温季节性较强的气候下则可以观察到相反的反应。种子对破皮和光照的萌发反应与种子质量有关,但与气候无关。我们还发现了实验条件下种子反应的显著系统发育信号,这表明萌发生态位受到系统发育的限制。然而,系统发育上较远的谱系在相似的气候下表现出共同的萌发反应。

结论

这是首次在大陆尺度上对萌发生态位进行的定量元分析。我们的研究结果表明,欧洲植物的萌发生态位表现出进化趋同,这是由宏观气候水平的强烈压力所介导的。此外,我们的方法学方法强调了保护种子库产生的大型数据集如何成为解决植物宏观生态学和进化问题的有价值的资源。

相似文献

2
Phylogeny and source climate impact seed dormancy and germination of restoration-relevant forb species.
PLoS One. 2018 Feb 5;13(2):e0191931. doi: 10.1371/journal.pone.0191931. eCollection 2018.
3
The seed germination spectrum of alpine plants: a global meta-analysis.
New Phytol. 2021 Mar;229(6):3573-3586. doi: 10.1111/nph.17086. Epub 2020 Dec 24.
4
Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats.
Ann Bot. 2013 Feb;111(2):283-92. doi: 10.1093/aob/mcs253. Epub 2012 Nov 27.
5
Seed ecology of European mesic meadows.
Ann Bot. 2022 Jan 28;129(2):121-134. doi: 10.1093/aob/mcab135.
6
Global seed dormancy patterns are driven by macroclimate but not fire regime.
New Phytol. 2023 Oct;240(2):555-564. doi: 10.1111/nph.19173. Epub 2023 Aug 3.
7
Regeneration from seed in herbaceous understorey of ancient woodlands of temperate Europe.
Ann Bot. 2022 Jul 18;129(7):761-774. doi: 10.1093/aob/mcac003.
9
Local climate explains degree of seed dormancy in Hypericum elodes L. (Hypericaceae).
Plant Biol (Stuttg). 2016 Jan;18 Suppl 1:76-82. doi: 10.1111/plb.12310. Epub 2015 Mar 2.

引用本文的文献

2
Genomic signatures of adaptation in seed traits in the wild plant Brassica incana.
Commun Biol. 2025 Aug 14;8(1):1225. doi: 10.1038/s42003-025-08673-w.
3
Global Patterns in the Evolutionary Relations Between Seed Mass and Germination Traits.
Ecol Evol. 2025 Jun 11;15(6):e71543. doi: 10.1002/ece3.71543. eCollection 2025 Jun.
4
Morphological Seed Traits Structure Relationships Between Biocrusts and Plant Emergence.
Ecol Evol. 2025 Jun 1;15(6):e71450. doi: 10.1002/ece3.71450. eCollection 2025 Jun.
5
Looking back to look ahead: the temporal dimension of conservation seed bank collections.
New Phytol. 2025 Aug;247(4):1589-1598. doi: 10.1111/nph.70187. Epub 2025 May 6.
7
Macroclimatic Convergence and Habitat Specialisation Shape the Mediterranean Seed Germination Syndrome.
Ecol Evol. 2024 Nov 7;14(11):e70527. doi: 10.1002/ece3.70527. eCollection 2024 Nov.
9
Seed functional ecology in Brazilian rock outcrop vegetation: an integrative synthesis.
Ann Bot. 2025 Feb 19;135(3):371-386. doi: 10.1093/aob/mcae160.
10
Seed dormancy types and germination response of 15 plant species in temperate montane peatlands.
Ecol Evol. 2024 Jul 1;14(7):e11671. doi: 10.1002/ece3.11671. eCollection 2024 Jul.

本文引用的文献

1
V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants.
Plant Divers. 2022 May 27;44(4):335-339. doi: 10.1016/j.pld.2022.05.005. eCollection 2022 Jul.
2
A global phylogenetic regionalization of vascular plants reveals a deep split between Gondwanan and Laurasian biotas.
New Phytol. 2022 Feb;233(3):1494-1504. doi: 10.1111/nph.17844. Epub 2021 Nov 26.
3
Seed ecology of European mesic meadows.
Ann Bot. 2022 Jan 28;129(2):121-134. doi: 10.1093/aob/mcab135.
4
Persistent soil seed banks promote naturalisation and invasiveness in flowering plants.
Ecol Lett. 2021 Aug;24(8):1655-1667. doi: 10.1111/ele.13783. Epub 2021 May 24.
5
The seed germination spectrum of alpine plants: a global meta-analysis.
New Phytol. 2021 Mar;229(6):3573-3586. doi: 10.1111/nph.17086. Epub 2020 Dec 24.
6
A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses.
Biodivers Data J. 2020 Jan 21;8:e39677. doi: 10.3897/BDJ.8.e39677. eCollection 2020.
7
TRY plant trait database - enhanced coverage and open access.
Glob Chang Biol. 2020 Jan;26(1):119-188. doi: 10.1111/gcb.14904. Epub 2019 Dec 31.
8
A research agenda for seed-trait functional ecology.
New Phytol. 2019 Mar;221(4):1764-1775. doi: 10.1111/nph.15502. Epub 2018 Oct 25.
9
Constructing a broadly inclusive seed plant phylogeny.
Am J Bot. 2018 Mar;105(3):302-314. doi: 10.1002/ajb2.1019. Epub 2018 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验