Suppr超能文献

基于全局线性化柯普曼理论的压电致动器记忆相关预测补偿控制

Memory related predictive compensation control of Piezoelectric actuators based on global linearization Koopman theory.

作者信息

Qi Xue, Shi Weijia, Wang Shaokai, Zhao Bo, Tan Jiubin

机构信息

Center of Ultra-precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin 150080, China; Key Lab of Ultra-precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150080, China.

Center of Ultra-precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin 150080, China; Key Lab of Ultra-precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150080, China.

出版信息

Ultrasonics. 2022 Aug;124:106727. doi: 10.1016/j.ultras.2022.106727. Epub 2022 Mar 12.

Abstract

Piezoelectric actuators (PEAs) are widely applied in precision positioning. However, the nonlinear characteristics such as hysteresis and creep limit the ultra-precision applications. This paper proposes a linear model predictive control (MPC) scheme for compensating the nonlinearity of PEA. Firstly, a global linearization predictor is constructed based on Koopman theory to represent the hysteresis behavior of PEA. The high-precision predictor is implemented by a novel memory related neural network (NN), and the prediction error reaches only 0.002 μm. Then the tracking control problem is transformed into a linear MPC optimization problem, thereby avoids the sophisticated nonconvex optimization problem. In practice, the constrained MPC problem is rewritten into a dense form, and solved by quadratic programming technique. Finally, the validity of the proposed scheme is demonstrated by experiments. The short-term steady-state error of the proposed scheme is 0.002 μm, which is far less than that of the inversion method; the long-term steady-state performance also indicates its effectiveness in compensating creep. Further, the excellent frequency-dependent results show that the proposed scheme is superior to the existing control method. Especially, the computational efficiency can be improved by 20%. The proposed predictor and control method are of great significance for the tracking control of PEA.

摘要

压电驱动器(PEA)在精密定位中得到广泛应用。然而,诸如滞后和蠕变等非线性特性限制了其超精密应用。本文提出一种线性模型预测控制(MPC)方案来补偿PEA的非线性。首先,基于库普曼理论构建全局线性化预测器以表征PEA的滞后行为。高精度预测器由一种新型的与记忆相关的神经网络(NN)实现,预测误差仅达到0.002μm。然后将跟踪控制问题转化为线性MPC优化问题,从而避免了复杂的非凸优化问题。在实际中,将约束MPC问题重写为密集形式,并通过二次规划技术求解。最后,通过实验验证了所提方案的有效性。所提方案的短期稳态误差为0.002μm,远小于逆方法的稳态误差;长期稳态性能也表明其在补偿蠕变方面的有效性。此外,出色的频率相关结果表明所提方案优于现有控制方法。特别是,计算效率可提高20%。所提预测器和控制方法对PEA的跟踪控制具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验