Suppr超能文献

基于库普曼模型的带学习动力学的模型预测控制:分层神经网络方法

Koopman-Based MPC With Learned Dynamics: Hierarchical Neural Network Approach.

作者信息

Wang Meixi, Lou Xuyang, Wu Wei, Cui Baotong

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):3630-3639. doi: 10.1109/TNNLS.2022.3194958. Epub 2024 Feb 29.

Abstract

This article presents a data-driven control strategy for nonlinear dynamical systems, enabling the construction of a Koopman-based linear system associated with nonlinear dynamics. The primary idea is to apply the deep learning technique to the Koopman framework for globally linearizing nonlinear dynamics and impose a Koopman-based model predictive control (MPC) approach to stabilize the nonlinear dynamical systems. In this work, we first generalize the Koopman framework to nonlinear control systems, enabling comprehensive linear analysis and control methods to be effective for nonlinear systems. We next present a hierarchical neural network (HNN) approach to deal with the crucial challenge of the finite-dimensional Koopman representation approximation. In particular, a scale-invariant constrained network in the HNN includes four modules, in which a predictor module and a linear module can accurately approximate the finite Koopman eigenfunctions and Koopman operator, respectively, thus forming the lifted linear system. Then, we design the Koopman-based MPC scheme for controlling nonlinear systems with constraints by adopting the modified MPC with a saturation-like function on the lifted linear system. Importantly, the Koopman-based MPC enjoys higher computational efficiency compared to the classical linear MPC and nonlinear MPC methods. Finally, a physical experiment on an overhead crane system is provided to demonstrate the effectiveness of the proposed data-driven control framework.

摘要

本文提出了一种用于非线性动力系统的数据驱动控制策略,能够构建一个与非线性动力学相关的基于柯普曼的线性系统。主要思想是将深度学习技术应用于柯普曼框架,以全局线性化非线性动力学,并采用基于柯普曼的模型预测控制(MPC)方法来稳定非线性动力系统。在这项工作中,我们首先将柯普曼框架推广到非线性控制系统,使全面的线性分析和控制方法对非线性系统有效。接下来,我们提出一种分层神经网络(HNN)方法来应对有限维柯普曼表示近似这一关键挑战。特别地,HNN中的尺度不变约束网络包括四个模块,其中预测器模块和线性模块可以分别准确近似有限柯普曼特征函数和柯普曼算子,从而形成提升后的线性系统。然后,我们通过在提升后的线性系统上采用具有类似饱和函数的改进MPC来设计基于柯普曼的MPC方案,用于控制具有约束的非线性系统。重要的是,与经典线性MPC和非线性MPC方法相比,基于柯普曼的MPC具有更高的计算效率。最后,给出了一个在桥式起重机系统上的物理实验,以证明所提出的数据驱动控制框架的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验