1Department of Neurological Surgery, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; and.
2Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York.
J Neurosurg Pediatr. 2022 Mar 18;29(6):719-726. doi: 10.3171/2022.1.PEDS21527. Print 2022 Jun 1.
Pseudotumor cerebri is a disorder of intracranial dynamics characterized by elevated intracranial pressure (ICP) and chronic cerebral venous hypertension without structural abnormalities. A perplexing feature of pseudotumor is the absence of the ventriculomegaly found in obstructive hydrocephalus, although both diseases are associated with increased resistance to cerebrospinal fluid (CSF) resorption. Traditionally, the pathophysiology of ventricular dilation and obstructive hydrocephalus has been attributed to the backup of CSF due to impaired absorption, and it is unclear why backup of CSF with resulting ventriculomegaly would not occur in pseudotumor. In this study, the authors used an electrical circuit model to simulate the cerebral windkessel effect and explain the presence of ventriculomegaly in obstructive hydrocephalus but not in pseudotumor cerebri.
The cerebral windkessel is a band-stop filter that dampens the arterial blood pressure pulse in the cranium. The authors used a tank circuit with parallel inductance and capacitance to model the windkessel. The authors distinguished the smooth flow of blood and CSF and the pulsatile flow of blood and CSF by using direct current (DC) and alternating current (AC) sources, respectively. The authors measured the dampening notch from ABP to ICP as the band-stop filter of the windkessel.
In obstructive hydrocephalus, loss of CSF pathway volume impaired the flow of AC power in the cranium and caused windkessel impairment, to which ventriculomegaly is an adaptation. In pseudotumor, venous hypertension affected DC power flow in the capillaries but did not affect AC power or the windkessel, therefore obviating the need for adaptive ventriculomegaly.
In pseudotumor, the CSF spaces are unaffected and the windkessel remains effective. Therefore, ventricles remain normal in size. In hydrocephalus, the windkessel, which depends on the flow of AC power in patent CSF spaces, is impaired, and the ventricles dilate as an adaptive process to restore CSF pathway volume. The windkessel model explains both ventriculomegaly in obstructive hydrocephalus and the lack of ventriculomegaly in pseudotumor. This model provides a novel understanding of the pathophysiology of disorders of CSF dynamics and has significant implications in clinical management.
假性脑瘤是一种以颅内压升高和慢性脑静脉高压为特征的颅内动力学紊乱,无结构异常。假性脑瘤的一个令人费解的特征是,尽管两种疾病都与脑脊液(CSF)吸收阻力增加有关,但没有发现阻塞性脑积水的脑室扩大。传统上,脑室扩张和阻塞性脑积水的病理生理学归因于 CSF 吸收受损导致的 CSF 积压,目前尚不清楚为什么在假性脑瘤中不会出现 CSF 积压导致的脑室扩大。在这项研究中,作者使用电路模型来模拟脑血池效应,并解释了在阻塞性脑积水存在而在假性脑瘤中不存在脑室扩大的原因。
脑血池是一种带阻滤波器,可缓冲颅骨中的动脉血压脉冲。作者使用具有并联电感和电容的水箱电路来模拟血池。作者通过分别使用直流(DC)和交流(AC)源来区分血液和 CSF 的平稳流动以及血液和 CSF 的脉动流动。作者将 ABP 到 ICP 的阻尼陷波作为血池的带阻滤波器进行测量。
在阻塞性脑积水,CSF 通路容积丧失损害了颅骨中 AC 功率的流动,导致血池受损,这是脑室扩大的一种适应。在假性脑瘤中,静脉高压影响毛细血管中的 DC 功率流,但不影响 AC 功率或血池,因此无需适应性脑室扩大。
在假性脑瘤中,CSF 空间不受影响,血池仍然有效。因此,脑室大小保持正常。在脑积水中,依赖于通畅的 CSF 空间中的 AC 功率流动的血池受损,作为恢复 CSF 通路容积的适应过程,脑室扩张。血池模型解释了阻塞性脑积水的脑室扩大和假性脑瘤缺乏脑室扩大的原因。该模型为 CSF 动力学紊乱的病理生理学提供了新的认识,并对临床管理具有重要意义。