Weill Cornell College of Medicine, New York, New York; Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York.
Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York.
J Arthroplasty. 2022 Jul;37(7S):S400-S407.e1. doi: 10.1016/j.arth.2022.03.033. Epub 2022 Mar 16.
Accurate hip joint center (HJC) determination is critical for preoperative planning, intraoperative execution, clinical outcomes after total hip arthroplasty, and commonly used classification systems in primary and revision hip replacement. However, current methods of preoperative HJC estimation are prone to subjectivity and human error. The purpose of the study was to leverage deep learning (DL) to develop a rapid and objective HJC estimation tool on anteroposterior (AP) pelvis radiographs.
Radiographs from 3,965 patients (7,930 hips) were included. A DL model workflow was created to detect bony landmarks and estimate HJC based on a pelvic height ratio method. The workflow was utilized to conduct a grid-search for optimal nonspecific, sex-specific, and patient-specific (using contralateral hip) pelvic height ratios on the training/validation cohort (6,344 hips). Algorithm performance was assessed on an independent testing cohort for HJC estimation comparison.
The algorithm estimated HJC for the testing cohort at a rate of 0.65 seconds/hip based on features in AP radiographs alone. The model predicted HJC within 5 mm of error for 80% of hips using nonspecific ratios, which increased to 83% with sex-specific and 91% with patient-specific pelvic height ratio models. Mean error decreased utilizing the patient-specific model (3.09 ± 1.69 mm, P < .001).
Using DL, we developed nonspecific, sex-specific, and patient-specific models capable of estimating native HJC on AP pelvis radiographs. This tool may provide clinical value when considering preoperative component position in patients planned to undergo THA and in reducing the subjective variability in HJC estimation.
Diagnostic, level IV.
准确确定髋关节中心(Hip Joint Center,HJC)对于术前规划、全髋关节置换术的术中执行、临床结果以及在初次和翻修髋关节置换中常用的分类系统至关重要。然而,目前术前 HJC 估计的方法容易受到主观性和人为错误的影响。本研究的目的是利用深度学习(Deep Learning,DL)技术在骨盆前后位(Anteroposterior,AP)X 光片上开发一种快速、客观的 HJC 估计工具。
共纳入 3965 名患者(7930 髋)的 X 光片。创建了一个 DL 模型工作流程,用于根据骨盆高度比方法检测骨标志并估计 HJC。该工作流程用于在训练/验证队列(6344 髋)上对非特定、性别特定和患者特定(使用对侧髋)骨盆高度比进行网格搜索,以找到最佳比值。然后在独立的测试队列上评估算法性能,以比较 HJC 估计的结果。
该算法基于 AP 射线图像中的特征,可在 0.65 秒/髋的速度下估算测试队列的 HJC。使用非特定比值的模型有 80%的髋可以预测出误差在 5mm 以内的 HJC,使用性别特异性和患者特异性骨盆高度比模型则分别增加到 83%和 91%。使用患者特异性模型时,平均误差降低(3.09±1.69mm,P<0.001)。
使用 DL,我们开发了非特定、性别特定和患者特定的模型,能够在 AP 骨盆 X 光片上估计 HJC。在考虑计划接受全髋关节置换术的患者的术前假体位置和减少 HJC 估计中的主观变异性时,该工具可能具有临床价值。
诊断,IV 级。