Stotter Christoph, Klestil Thomas, Röder Christoph, Reuter Philippe, Chen Kenneth, Emprechtinger Robert, Hummer Allan, Salzlechner Christoph, DiFranco Matthew, Nehrer Stefan
Department for Orthopedics and Traumatology, Landesklinikum Baden-Mödling, 2340 Mödling, Austria.
Department for Health Sciences, Medicine and Research, University for Continuing Education Krems, 3500 Krems, Austria.
Diagnostics (Basel). 2023 Jan 29;13(3):497. doi: 10.3390/diagnostics13030497.
The morphometry of the hip and pelvis can be evaluated in native radiographs. Artificial-intelligence-assisted analyses provide objective, accurate, and reproducible results. This study investigates the performance of an artificial intelligence (AI)-based software using deep learning algorithms to measure radiological parameters that identify femoroacetabular impingement and hip dysplasia. Sixty-two radiographs (124 hips) were manually evaluated by three observers and fully automated analyses were performed by an AI-driven software (HIPPO™, ImageBiopsy Lab, Vienna, Austria). We compared the performance of the three human readers with the HIPPO™ using a Bayesian mixed model. For this purpose, we used the absolute deviation from the median ratings of all readers and HIPPO™. Our results indicate a high probability that the AI-driven software ranks better than at least one manual reader for the majority of outcome measures. Hence, fully automated analyses could provide reproducible results and facilitate identifying radiographic signs of hip disorders.
髋关节和骨盆的形态测量可以在原始X线片上进行评估。人工智能辅助分析可提供客观、准确且可重复的结果。本研究调查了一种基于人工智能(AI)的软件使用深度学习算法测量识别股骨髋臼撞击症和髋关节发育不良的放射学参数的性能。由三名观察者对62张X线片(124个髋关节)进行人工评估,并由一个AI驱动的软件(HIPPO™,ImageBiopsy Lab,维也纳,奥地利)进行全自动分析。我们使用贝叶斯混合模型比较了三名人类读者与HIPPO™的性能。为此,我们使用了与所有读者和HIPPO™中位数评分的绝对偏差。我们的结果表明,对于大多数结果测量,AI驱动的软件排名高于至少一名人工读者的可能性很高。因此,全自动分析可以提供可重复的结果,并有助于识别髋关节疾病的放射学征象。