Suppr超能文献

平面细胞极性信号传导引导耳蜗神经支配。

Planar cell polarity signaling guides cochlear innervation.

作者信息

Deans Michael R

机构信息

Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA.

出版信息

Dev Biol. 2022 Jun;486:1-4. doi: 10.1016/j.ydbio.2022.03.005. Epub 2022 Mar 17.

Abstract

Core planar cell polarity (PCP) proteins are linked to mechanisms of growth cone turning in response to Wnt ligands and direct the cellular organization and planar polarity of neurons, neuroepithelia and supporting cells, many of which are also the substrates along which growth cones navigate (Onishi et al., 2014; Tissir and Goffinet, 2013). Genetic manipulations in the mouse further demonstrate that PCP proteins along the migratory path can have a non-cell autonomous influence on growth cone turning (Ghimire and Deans, 2019; Ghimire et al., 2018) and neuronal migration (Davey et al., 2016; Glasco et al., 2012; Qu et al., 2010). For example, in the cochlea a distinctive 90-degree turn made by the peripheral axons of type II Spiral Ganglion Neurons (SGN) is dependent upon the PCP protein Vangl2 and the Frizzled receptors Fzd3 and Fzd6. When the corresponding genes are removed from non-neuronal supporting cells at the initial site of axon turning, the outcome of the turn is randomized (Ghimire and Deans, 2019; Ghimire et al., 2018). Together these observations demonstrate that the planar polarized development or organization of the cochlear environment through which these growth cones navigate has a substantive impact on pathfinding and axon projections. The outstanding question remains how planar polarization of cochlear supporting cells contributes to growth cone behavior, axonal trajectories and connectivity. Possibilities include the structural polarization of cells that act as physical guides, the polarized distribution of axon guidance cues within these cells, or direct intercellular PCP signaling between supporting cells and navigating growth cones. The caudal migration of facial branchiomotor neurons (FBMN) is similarly dependent upon the planar polarized distribution of PCP proteins in the neuroepithelial cell substrate along which they migrate (Davey et al., 2016). This raises the broader question of whether planar polarization of cells along a growth cone’s trajectory might contribute as a general mechanism of axon guidance, or whether this mechanism is a specialized adaptation unique to the cochlea.

摘要

核心平面细胞极性(PCP)蛋白与生长锥响应Wnt配体而发生转向的机制相关联,并指导神经元、神经上皮细胞和支持细胞的细胞组织和平面极性,其中许多细胞也是生长锥导航的底物(大西等人,2014年;蒂西尔和戈菲内,2013年)。对小鼠的基因操作进一步表明,沿迁移路径的PCP蛋白可对生长锥转向(吉米尔和迪恩斯,2019年;吉米尔等人,2018年)和神经元迁移(戴维等人,2016年;格拉斯科等人,2012年;瞿等人,2010年)产生非细胞自主性影响。例如,在耳蜗中,II型螺旋神经节神经元(SGN)的外周轴突做出的独特90度转向依赖于PCP蛋白Vangl2以及卷曲受体Fzd3和Fzd6。当在轴突转向的起始部位从非神经元支持细胞中去除相应基因时,转向结果会随机化(吉米尔和迪恩斯,2019年;吉米尔等人,2018年)。这些观察结果共同表明,这些生长锥所导航通过的耳蜗环境的平面极化发育或组织对路径寻找和轴突投射具有实质性影响。悬而未决的问题仍然是耳蜗支持细胞的平面极化如何影响生长锥行为、轴突轨迹和连接性。可能性包括作为物理导向的细胞的结构极化、这些细胞内轴突导向信号的极化分布,或支持细胞与导航生长锥之间直接的细胞间PCP信号传导。面部鳃运动神经元(FBMN)的尾端迁移同样依赖于它们所迁移的神经上皮细胞底物中PCP蛋白的平面极化分布(戴维等人,2016年)。这就提出了一个更广泛的问题,即沿着生长锥轨迹的细胞平面极化是否可能作为轴突导向的一般机制发挥作用,或者这种机制是否是耳蜗特有的特殊适应性机制。

相似文献

1
Planar cell polarity signaling guides cochlear innervation.
Dev Biol. 2022 Jun;486:1-4. doi: 10.1016/j.ydbio.2022.03.005. Epub 2022 Mar 17.
2
and Cooperate with to Direct Cochlear Innervation by Type II Spiral Ganglion Neurons.
J Neurosci. 2019 Oct 9;39(41):8013-8023. doi: 10.1523/JNEUROSCI.1740-19.2019. Epub 2019 Aug 28.
3
Evaluation of Planar-Cell-Polarity Phenotypes in Ciliopathy Mouse Mutant Cochlea.
J Vis Exp. 2016 Feb 21(108):53559. doi: 10.3791/53559.
4
The role of G protein-coupled receptors in cochlear planar cell polarity.
Int J Biochem Cell Biol. 2016 Aug;77(Pt B):220-5. doi: 10.1016/j.biocel.2016.02.011. Epub 2016 Feb 24.
6
Development and Patterning of the Cochlea: From Convergent Extension to Planar Polarity.
Cold Spring Harb Perspect Med. 2020 Jan 2;10(1):a033266. doi: 10.1101/cshperspect.a033266.
7
FOXF2 is required for cochlear development in humans and mice.
Hum Mol Genet. 2019 Apr 15;28(8):1286-1297. doi: 10.1093/hmg/ddy431.
8
Planar cell polarity and vertebrate organogenesis.
Semin Cell Dev Biol. 2006 Apr;17(2):194-203. doi: 10.1016/j.semcdb.2006.05.003. Epub 2006 May 26.
9
Role of the planar cell polarity pathway in regulating ectopic hair cell-like cells induced by Math1 and testosterone treatment.
Brain Res. 2015 Jul 30;1615:22-30. doi: 10.1016/j.brainres.2015.04.017. Epub 2015 May 7.
10
Prickle1 regulates neurite outgrowth of apical spiral ganglion neurons but not hair cell polarity in the murine cochlea.
PLoS One. 2017 Aug 24;12(8):e0183773. doi: 10.1371/journal.pone.0183773. eCollection 2017.

引用本文的文献

2
3
Rac1 and Nectin3 are essential for PCP-directed axon guidance in the peripheral auditory system.
bioRxiv. 2024 Jun 7:2024.06.05.597585. doi: 10.1101/2024.06.05.597585.

本文引用的文献

1
Expression Within Inner Ear Afferent Neurons Is Necessary for Central Pathfinding.
Front Neurosci. 2022 Jan 27;15:779871. doi: 10.3389/fnins.2021.779871. eCollection 2021.
2
Prior Acoustic Trauma Alters Type II Afferent Activity in the Mouse Cochlea.
eNeuro. 2021 Nov 11;8(6). doi: 10.1523/ENEURO.0383-21.2021. Print 2021 Nov-Dec.
3
LRRK2 mediates axon development by regulating Frizzled3 phosphorylation and growth cone-growth cone communication.
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):18037-18048. doi: 10.1073/pnas.1921878117. Epub 2020 Jul 8.
4
Characterization of the development of the mouse cochlear epithelium at the single cell level.
Nat Commun. 2020 May 13;11(1):2389. doi: 10.1038/s41467-020-16113-y.
5
and Cooperate with to Direct Cochlear Innervation by Type II Spiral Ganglion Neurons.
J Neurosci. 2019 Oct 9;39(41):8013-8023. doi: 10.1523/JNEUROSCI.1740-19.2019. Epub 2019 Aug 28.
6
Topologically correct central projections of tetrapod inner ear afferents require Fzd3.
Sci Rep. 2019 Jul 16;9(1):10298. doi: 10.1038/s41598-019-46553-6.
8
Domineering non-autonomy in Vangl1;Vangl2 double mutants demonstrates intercellular PCP signaling in the vertebrate inner ear.
Dev Biol. 2018 May 1;437(1):17-26. doi: 10.1016/j.ydbio.2018.02.021. Epub 2018 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验