Clancy Shaylyn, Xie Nicholas, Muttikkal Tess Eluvathingal, Wang Jasmine, Fateh Esha, Smith Margaret, Wilson Phillip, Smith Matthew, Hogan Arielle, Sutherland Ann, Lu Xiaowei
Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22903, United States.
bioRxiv. 2024 Jun 7:2024.06.05.597585. doi: 10.1101/2024.06.05.597585.
Our sense of hearing is critically dependent on the spiral ganglion neurons (SGNs) that connect the sound receptors in the organ of Corti (OC) to the cochlear nuclei of the hindbrain. Type I SGNs innervate inner hair cells (IHCs) to transmit sound signals, while type II SGNs (SGNIIs) innervate outer hair cells (OHCs) to detect moderate-to-intense sound. During development, SGNII afferents make a characteristic 90-degree turn toward the base of the cochlea and innervate multiple OHCs. It has been shown that the Planar Cell Polarity (PCP) pathway acts non-autonomously to mediate environmental cues in the cochlear epithelium for SGNII afferent turning towards the base. However, the underlying mechanisms are unknown. Here, we present evidence that PCP signaling regulates multiple downstream effectors to influence cell adhesion and the cytoskeleton in cochlear supporting cells (SCs), which serve as intermediate targets of SGNII afferents. We show that the core PCP gene Vangl2 regulates the localization of the small GTPase Rac1 and the cell adhesion molecule Nectin3 at SC-SC junctions through which SGNII afferents travel. Through genetic analysis, we also show that loss of Rac1 or Nectin3 partially phenocopied SGNII peripheral afferent turning defects in mutants, and that Rac1 plays a non-autonomous role in this process in part by regulating PCP protein localization at the SC-SC junctions. Additionally, epistasis analysis indicates that Nectin3 and Rac1 likely act in the same genetic pathway to control SGNII afferent turning. Together, these experiments identify Nectin3 and Rac1 as novel regulators of PCP-directed SGNII axon guidance in the cochlea.
我们的听觉严重依赖于螺旋神经节神经元(SGNs),这些神经元将柯蒂氏器(OC)中的声音感受器与后脑的耳蜗核连接起来。I型SGNs支配内毛细胞(IHCs)以传递声音信号,而II型SGNs(SGNIIs)支配外毛细胞(OHCs)以检测中度至强烈的声音。在发育过程中,SGNII传入神经向耳蜗底部进行特征性的90度转向并支配多个OHCs。研究表明,平面细胞极性(PCP)通路通过非自主作用介导耳蜗上皮中的环境线索,使SGNII传入神经转向底部。然而,其潜在机制尚不清楚。在这里,我们提供证据表明,PCP信号传导调节多个下游效应器,以影响耳蜗支持细胞(SCs)中的细胞粘附和细胞骨架,而SCs是SGNII传入神经的中间靶点。我们发现核心PCP基因Vangl2调节小GTP酶Rac1和细胞粘附分子Nectin3在SCs-SCs连接处的定位,而SGNII传入神经通过这些连接处穿行。通过遗传分析,我们还表明,Rac1或Nectin3的缺失部分模拟了突变体中SGNII外周传入神经转向缺陷,并且Rac1在这一过程中发挥非自主作用,部分原因是调节PCP蛋白在SCs-SCs连接处的定位。此外,上位性分析表明,Nectin3和Rac1可能在同一遗传途径中发挥作用,以控制SGNII传入神经转向。总之,这些实验确定Nectin3和Rac1是耳蜗中PCP导向的SGNII轴突导向的新型调节因子。