School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
Biochem Biophys Res Commun. 2022 May 14;604:172-178. doi: 10.1016/j.bbrc.2022.03.056. Epub 2022 Mar 12.
A functional proteome in the cell is maintained by coordinate regulation of biogenesis, folding, and degradation of cellular proteins. Although the degradation pathways have been extensively characterized for various substrates, it remains elusive how large multiprotein complexes are selectively degraded. Recent investigations have discovered selective autophagic degradation of the yeast Nuclear Pore Complex (NPC) consisting of ∼500 proteins and mediating selective nucleocytoplasmic transport. To understand the underlying molecular mechanism of NPC-phagy, we performed biophysical characterization of the interaction between Atg8 and an intrinsically disordered region (IDR) of Nup159 involved in the initial recognition step. In particular, from the systematic isothermal titration calorimetry (ITC) experiments, we determined the thermodynamic parameters and discovered a significant negative heat capacity change (ΔC°) for the interaction. Furthermore, the heat capacity change becomes more negative at higher temperatures, yielding a negative curvature in the observed enthalpy change (ΔH°) with respect to temperature. This thermodynamic feature was analyzed in terms of coupling between binding and conformational equilibria of Atg8 and/or Nup159 IDR. We interpret the coupled conformational equilibria as disorder-to-order transitions or local stabilizations of Nup159 IDR and/or partially unfolded Atg8 upon binding. A potential impact of the proposed coupling in the initial step of NPC-phagy is discussed. In a broader view, our study demonstrates that a negative curvature of ΔH° can be used as a probe for conformational selection processes in the interactions of IDRs with their target proteins.
细胞中的功能蛋白质组是通过细胞蛋白质的生物发生、折叠和降解的协调调节来维持的。尽管已经广泛研究了各种底物的降解途径,但仍不清楚如何选择性地降解大型多蛋白复合物。最近的研究发现,酵母核孔复合物(NPC)的选择性自噬降解,NPC 由约 500 种蛋白质组成,介导核质选择性转运。为了了解 NPC 吞噬的潜在分子机制,我们对参与初始识别步骤的 Atg8 与 Nup159 中一个固有无序区域(IDR)之间的相互作用进行了生物物理特性分析。特别是,通过系统的等温滴定量热法(ITC)实验,我们确定了热力学参数,并发现相互作用具有显著的负热容变化(ΔC°)。此外,在较高温度下,热容变化变得更负,导致观察到的焓变(ΔH°)随温度呈现负曲率。从 Atg8 和/或 Nup159 IDR 的结合和构象平衡的耦合的角度分析了这一热力学特征。我们将耦合的构象平衡解释为 Nup159 IDR 的无序到有序转变或局部稳定化,以及结合时 Atg8 的部分展开。讨论了所提出的耦合在 NPC 吞噬初始步骤中的潜在影响。从更广泛的角度来看,我们的研究表明,ΔH°的负曲率可以作为 IDR 与其靶蛋白相互作用中构象选择过程的探针。