Suppr超能文献

快速且选择性地穿过核孔复合体的多价相互作用的热力学特征。

Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex.

机构信息

From the Laboratory of Cellular and Structural Biology, Rockefeller University, New York, New York 10065.

the Departments of Biochemistry and of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, and.

出版信息

J Biol Chem. 2018 Mar 23;293(12):4555-4563. doi: 10.1074/jbc.AC117.001649. Epub 2018 Jan 26.

Abstract

Intrinsically disordered proteins (IDPs) play important roles in many biological systems. Given the vast conformational space that IDPs can explore, the thermodynamics of the interactions with their partners is closely linked to their biological functions. Intrinsically disordered regions of Phe-Gly nucleoporins (FG Nups) that contain multiple phenylalanine-glycine repeats are of particular interest, as their interactions with transport factors (TFs) underlie the paradoxically rapid yet also highly selective transport of macromolecules mediated by the nuclear pore complex. Here, we used NMR and isothermal titration calorimetry to thermodynamically characterize these multivalent interactions. These analyses revealed that a combination of low per-FG motif affinity and the enthalpy-entropy balance prevents high-avidity interaction between FG Nups and TFs, whereas the large number of FG motifs promotes frequent FG-TF contacts, resulting in enhanced selectivity. Our thermodynamic model underlines the importance of functional disorder of FG Nups. It helps explain the rapid and selective translocation of TFs through the nuclear pore complex and further expands our understanding of the mechanisms of "fuzzy" interactions involving IDPs.

摘要

无规卷曲蛋白质(IDPs)在许多生物系统中发挥着重要作用。鉴于 IDPs 可以探索的构象空间非常大,与它们的伴侣相互作用的热力学与它们的生物学功能密切相关。含有多个苯丙氨酸-甘氨酸重复序列的核孔蛋白(FG Nups)的无规卷曲区域特别引人注目,因为它们与转运因子(TFs)的相互作用是核孔复合物介导的大分子进行快速但又高度选择性运输的基础。在这里,我们使用 NMR 和等温热滴定法来对这些多价相互作用进行热力学表征。这些分析表明,低每个 FG 基序亲和力与焓熵平衡的组合防止 FG Nups 和 TFs 之间高亲和力的相互作用,而大量的 FG 基序促进 FG-TF 频繁接触,从而提高选择性。我们的热力学模型强调了 FG Nups 功能无序的重要性。它有助于解释 TFs 通过核孔复合物的快速和选择性易位,并进一步扩展了我们对涉及 IDPs 的“模糊”相互作用机制的理解。

相似文献

3
Prevalence and functionality of intrinsic disorder in human FG-nucleoporins.
Int J Biol Macromol. 2021 Apr 1;175:156-170. doi: 10.1016/j.ijbiomac.2021.01.218. Epub 2021 Feb 3.
4
Fuzzy and fast nuclear transport.
J Biol Chem. 2018 Mar 23;293(12):4564-4565. doi: 10.1074/jbc.H118.002129.
5
Multivalent Interactions with Intrinsically Disordered Proteins Probed by Surface Plasmon Resonance.
Methods Mol Biol. 2022;2502:311-328. doi: 10.1007/978-1-0716-2337-4_21.
6
Multifunctionality of F-rich nucleoporins.
Biochem Soc Trans. 2020 Dec 18;48(6):2603-2614. doi: 10.1042/BST20200357.
7
Nucleoporin's Like Charge Regions Are Major Regulators of FG Coverage and Dynamics Inside the Nuclear Pore Complex.
PLoS One. 2015 Dec 11;10(12):e0143745. doi: 10.1371/journal.pone.0143745. eCollection 2015.
8
Deciphering the intrinsically disordered characteristics of the FG-Nups through the lens of polymer physics.
Nucleus. 2024 Dec;15(1):2399247. doi: 10.1080/19491034.2024.2399247. Epub 2024 Sep 16.
10
Deciphering the "Fuzzy" Interaction of FG Nucleoporins and Transport Factors Using Small-Angle Neutron Scattering.
Structure. 2018 Mar 6;26(3):477-484.e4. doi: 10.1016/j.str.2018.01.010. Epub 2018 Feb 8.

引用本文的文献

1
Structure, function and assembly of nuclear pore complexes.
Nat Rev Mol Cell Biol. 2025 Sep 9. doi: 10.1038/s41580-025-00881-w.
2
Role of charges in a dynamic disordered complex between an IDP and a folded domain.
Nat Commun. 2025 Apr 4;16(1):3242. doi: 10.1038/s41467-025-58374-5.
4
Deciphering the intrinsically disordered characteristics of the FG-Nups through the lens of polymer physics.
Nucleus. 2024 Dec;15(1):2399247. doi: 10.1080/19491034.2024.2399247. Epub 2024 Sep 16.
5
Role of charge in enhanced nuclear transport and retention of graphene quantum dots.
Sci Rep. 2024 Aug 16;14(1):19044. doi: 10.1038/s41598-024-69809-2.
6
Protein folding and quality control during nuclear transport.
Curr Opin Cell Biol. 2024 Oct;90:102407. doi: 10.1016/j.ceb.2024.102407. Epub 2024 Aug 13.
7
A survey of the specificity and mechanism of 1,6 hexanediol-induced disruption of nuclear transport.
Nucleus. 2023 Dec;14(1):2240139. doi: 10.1080/19491034.2023.2240139.
8
Improving the hole picture: towards a consensus on the mechanism of nuclear transport.
Biochem Soc Trans. 2023 Apr 26;51(2):871-886. doi: 10.1042/BST20220494.
10
Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment.
Phys Rep. 2021 Jul 25;921:1-53. doi: 10.1016/j.physrep.2021.03.003. Epub 2021 Mar 24.

本文引用的文献

1
Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2754-2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3.
2
The nuclear pore complex: understanding its function through structural insight.
Nat Rev Mol Cell Biol. 2017 Feb;18(2):73-89. doi: 10.1038/nrm.2016.147. Epub 2016 Dec 21.
3
Simple rules for passive diffusion through the nuclear pore complex.
J Cell Biol. 2016 Oct 10;215(1):57-76. doi: 10.1083/jcb.201601004. Epub 2016 Oct 3.
6
Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2489-97. doi: 10.1073/pnas.1522663113. Epub 2016 Apr 18.
7
The Nuclear Pore Complex as a Flexible and Dynamic Gate.
Cell. 2016 Mar 10;164(6):1162-1171. doi: 10.1016/j.cell.2016.01.034.
8
Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.
Cell. 2015 Oct 22;163(3):734-45. doi: 10.1016/j.cell.2015.09.047. Epub 2015 Oct 8.
10
How to operate a nuclear pore complex by Kap-centric control.
Nucleus. 2015;6(5):366-72. doi: 10.1080/19491034.2015.1090061.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验