Suppr超能文献

基于后气门图像的深度卷积神经网络模型在法医重要蝇蛆物种鉴定中的评估

Assessment of deep convolutional neural network models for species identification of forensically-important fly maggots based on images of posterior spiracles.

作者信息

Apasrawirote Darlin, Boonchai Pharinya, Muneesawang Paisarn, Nakhonkam Wannacha, Bunchu Nophawan

机构信息

Department of Business Administration, Faculty of Business Economics and Communications, Naresuan University, Muang, Phitsanulok, 65000, Thailand.

Department of Electrical and Computer Engineering, Faculty of Engineering, Naresuan University, Muang, Phitsanulok, 65000, Thailand.

出版信息

Sci Rep. 2022 Mar 19;12(1):4753. doi: 10.1038/s41598-022-08823-8.

Abstract

Forensic entomology is the branch of forensic science that is related to using arthropod specimens found in legal issues. Fly maggots are one of crucial pieces of evidence that can be used for estimating post-mortem intervals worldwide. However, the species-level identification of fly maggots is difficult, time consuming, and requires specialized taxonomic training. In this work, a novel method for the identification of different forensically-important fly species is proposed using convolutional neural networks (CNNs). The data used for the experiment were obtained from a digital camera connected to a compound microscope. We compared the performance of four widely used models that vary in complexity of architecture to evaluate tradeoffs in accuracy and speed for species classification including ResNet-101, Densenet161, Vgg19_bn, and AlexNet. In the validation step, all of the studied models provided 100% accuracy for identifying maggots of 4 species including Chrysomya megacephala (Diptera: Calliphoridae), Chrysomya (Achoetandrus) rufifacies (Diptera: Calliphoridae), Lucilia cuprina (Diptera: Calliphoridae), and Musca domestica (Diptera: Muscidae) based on images of posterior spiracles. However, AlexNet showed the fastest speed to process the identification model and presented a good balance between performance and speed. Therefore, the AlexNet model was selected for the testing step. The results of the confusion matrix of AlexNet showed that misclassification was found between C. megacephala and C. (Achoetandrus) rufifacies as well as between C. megacephala and L. cuprina. No misclassification was found for M. domestica. In addition, we created a web-application platform called thefly.ai to help users identify species of fly maggots in their own images using our classification model. The results from this study can be applied to identify further species by using other types of images. This model can also be used in the development of identification features in mobile applications. This study is a crucial step for integrating information from biology and AI-technology to develop a novel platform for use in forensic investigation.

摘要

法医昆虫学是法医学的一个分支,与在法律问题中使用节肢动物标本有关。蝇蛆是可用于估计全球死后间隔时间的关键证据之一。然而,蝇蛆的物种水平鉴定困难、耗时,且需要专门的分类学训练。在这项工作中,提出了一种使用卷积神经网络(CNN)鉴定不同法医重要蝇类物种的新方法。用于实验的数据是从连接到复合显微镜的数码相机获得的。我们比较了四种架构复杂度不同的广泛使用的模型的性能,以评估物种分类在准确性和速度方面的权衡,包括ResNet - 101、Densenet161、Vgg19_bn和AlexNet。在验证步骤中,所有研究模型基于后气门图像对大头金蝇(双翅目:丽蝇科)、红头丽蝇(双翅目:丽蝇科)、铜绿蝇(双翅目:丽蝇科)和家蝇(双翅目:蝇科)这4种蝇蛆的鉴定准确率均达到100%。然而,AlexNet显示出处理鉴定模型的最快速度,并且在性能和速度之间呈现出良好的平衡。因此,选择AlexNet模型进行测试步骤。AlexNet的混淆矩阵结果表明,在大头金蝇和红头丽蝇之间以及大头金蝇和铜绿蝇之间存在误分类。家蝇未发现误分类。此外,我们创建了一个名为thefly.ai的网络应用平台,以帮助用户使用我们的分类模型识别他们自己图像中的蝇蛆物种。这项研究的结果可用于通过使用其他类型的图像来鉴定更多物种。该模型还可用于移动应用中鉴定特征的开发。这项研究是整合生物学和人工智能技术信息以开发用于法医调查的新型平台的关键一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c1/8934339/82b45da5fef0/41598_2022_8823_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验