Suppr超能文献

基于常见动力学分组的混合物测试和优先级排序方法。

An approach for mixture testing and prioritization based on common kinetic groups.

机构信息

Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.

Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.

出版信息

Arch Toxicol. 2022 Jun;96(6):1661-1671. doi: 10.1007/s00204-022-03264-8. Epub 2022 Mar 19.

Abstract

In light of an ever-increasing exposure to chemicals, the topic of potential mixture toxicity has gained increased attention, particularly as the toxicological toolbox to address such questions has vastly improved. Routinely toxicological risk assessments will rely on the analysis of individual compounds with mixture effects being considered only in those specific cases where co-exposure is foreseeable, for example for pesticides or food contact materials. In the field of pesticides, active substances are summarized in so-called cumulative assessment groups (CAG) which are primarily based on their toxicodynamic properties, that is, respective target organs and mode of action (MoA). In this context, compounds causing toxicity by a similar MoA are assumed to follow a model of dose/concentration addition (DACA). However, the respective approach inherently falls short of addressing cases where there are dissimilar or independent MoAs resulting in wider toxicokinetic effects. Yet, the latter are often the underlying cause when effects deviate from the DACA model. In the present manuscript, we therefore suggest additionally to consider toxicokinetic effects (especially related to xenobiotic metabolism and transporter interaction) for the grouping of substances to predict mixture toxicity. In line with the concept of MoA-based CAGs, we propose common kinetics groups (CKGs) as an additional tool for grouping of chemicals and mixture prioritization. Fundamentals of the CKG concept are discussed, along with challenges for its implementation, and methodological approaches and examples are explored.

摘要

鉴于人们不断接触化学物质,潜在混合物毒性这一话题受到了越来越多的关注,尤其是因为用于解决此类问题的毒理学工具包已经有了很大的改进。通常情况下,毒理学风险评估将依赖于对单个化合物的分析,只有在可以预见共同暴露的情况下,例如对于农药或食品接触材料,才会考虑混合物的影响。在农药领域,活性物质被总结在所谓的累积评估组 (CAG) 中,这些组主要基于它们的毒动学特性,即各自的靶器官和作用模式 (MoA)。在这种情况下,具有相似 MoA 的化合物被认为遵循剂量/浓度加和 (DACA) 的模型。然而,这种方法本身并不能解决具有不同或独立 MoA 从而导致更广泛的毒代动力学效应的情况。然而,当效应偏离 DACA 模型时,后者往往是潜在的原因。因此,在本文中,我们建议另外考虑毒代动力学效应(特别是与外源化学物代谢和转运体相互作用有关的效应),以便对物质进行分组以预测混合物毒性。与基于 MoA 的 CAG 概念一致,我们提出了共同动力学组 (CKG) 作为一种额外的化学品分组和混合物优先级划分工具。本文讨论了 CKG 概念的基础,以及实施该概念所面临的挑战,并探讨了方法学方法和实例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6620/9095521/cf28531c19d6/204_2022_3264_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验