Suppr超能文献

利用自然语言处理从青光眼患者中提取活性药物和用药依从性。

Extraction of Active Medications and Adherence Using Natural Language Processing for Glaucoma Patients.

机构信息

Medical Informatics & Clinical Epidemiology.

School of Medicine.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:773-782. eCollection 2021.

Abstract

Accuracy of medication data in electronic health records (EHRs) is crucial for patient care and research, but many studies have shown that medication lists frequently contain errors. In contrast, physicians often pay more attention to the clinical notes and record medication information in them. The medication information in notes may be used for medication reconciliation to improve the medication lists' accuracy. However, accurately extracting patient's current medications from free-text narratives is challenging. In this study, we first explored the discrepancies between medication documentation in medication lists and progress notes for glaucoma patients by manually reviewing patients' charts. Next, we developed and validated a named entity recognition model to identify current medication and adherence from progress notes. Lastly, a prototype tool for medication reconciliation using the developed model was demonstrated. In the future, the model has the potential to be incorporated into the EHR system to help with realtime medication reconciliation.

摘要

电子健康记录(EHR)中的药物数据的准确性对于患者护理和研究至关重要,但许多研究表明,药物清单经常包含错误。相比之下,医生通常更关注临床记录并在其中记录药物信息。记录中的药物信息可用于药物重整以提高药物清单的准确性。然而,从自由文本叙述中准确提取患者当前的药物是具有挑战性的。在这项研究中,我们首先通过手动审查患者图表来探索青光眼患者的药物清单和进展记录中的药物记录差异。接下来,我们开发并验证了一个命名实体识别模型,以从进展记录中识别当前药物和用药依从性。最后,展示了一个使用所开发模型进行药物重整的原型工具。将来,该模型有可能被纳入 EHR 系统,以帮助进行实时药物重整。

相似文献

引用本文的文献

1
Development and Evaluation of a Computable Phenotype for Normal Tension Glaucoma.正常眼压性青光眼可计算表型的开发与评估
Ophthalmol Sci. 2025 Jun 18;5(6):100858. doi: 10.1016/j.xops.2025.100858. eCollection 2025 Nov-Dec.
4
Big data to guide glaucoma treatment.大数据指导青光眼治疗。
Taiwan J Ophthalmol. 2023 Jul 28;14(3):333-339. doi: 10.4103/tjo.TJO-D-23-00068. eCollection 2024 Jul-Sep.
7
Named Entity Recognition in Electronic Health Records: A Methodological Review.电子健康记录中的命名实体识别:方法学综述
Healthc Inform Res. 2023 Oct;29(4):286-300. doi: 10.4258/hir.2023.29.4.286. Epub 2023 Oct 31.

本文引用的文献

4
Medication Burden for Patients With Bacterial Keratitis.细菌性角膜炎患者的药物负担。
Cornea. 2019 Aug;38(8):933-937. doi: 10.1097/ICO.0000000000001942.
9
Clinical information extraction applications: A literature review.临床信息提取应用:文献综述。
J Biomed Inform. 2018 Jan;77:34-49. doi: 10.1016/j.jbi.2017.11.011. Epub 2017 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验