Suppr超能文献

厄瓜多尔人类钩端螺旋体病现行监测系统评估:决策分析模型。

Assessment of the Current Surveillance System for Human Leptospirosis in Ecuador by Decision Analytic Modeling.

机构信息

PhD Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.

Faculty of Veterinary Sciences, Institute of Preventive Veterinary Medicine, Universidad Austral de Chile, Valdivia, Chile.

出版信息

Front Public Health. 2022 Mar 3;10:711938. doi: 10.3389/fpubh.2022.711938. eCollection 2022.

Abstract

Leptospirosis is a globally disseminated zoonotic disease with no national surveillance systems. On the other hand, surveillance is crucial for improving population health, and surveillance systems produce data that motivates action. Unfortunately, like many other countries, Ecuador put in place a monitoring system that has never been tested. The goal of this study was to use scenario tree modeling to assess the sensitivity of Ecuador's current national surveillance system to human leptospirosis as the basis for an economic assessment of the system. We created a decision-tree model to analyze the current system's sensitivity. The inputs were described as probabilities distributions, and the model assessed the program's sensitivity as an output. The model also considers the geographical and weather variations across Ecuador's three continental regions: Andean, Amazonia, and the Coast. Several data sources were used to create the model, including leptospirosis records from Ecuador's Ministry of Public Health, national and international literature, and expert elicitation, all of which were incorporated in a Bayesian framework. We were able to determine the most critical parameters influencing each scenario's output (CSU) sensitivity through sensitivity analysis. The Coast region had the best sensitivity scenario, with a median of 0.85% (IC 95% 0.41-0.99), followed by the Amazonia with a median of 0.54% (CI 95% 0.18-0.99) and the Andes with a median of 0.29% (CI 95% 0.02-0.89). As per the sensitivity study, the most influential criteria on the system's sensitivity were "Attendance or probability of going to a health center" and "probability of having symptoms," notably for the Coast and Amazonia Regions.

摘要

钩端螺旋体病是一种全球传播的动物源性传染病,没有全国性的监测系统。另一方面,监测对于改善人口健康至关重要,监测系统产生的数据可以推动采取行动。不幸的是,与许多其他国家一样,厄瓜多尔建立了一个从未经过测试的监测系统。本研究的目的是使用情景树模型评估厄瓜多尔现行国家监测系统对人类钩端螺旋体病的敏感性,以此作为对该系统进行经济评估的基础。我们创建了一个决策树模型来分析当前系统的敏感性。输入被描述为概率分布,模型将程序的敏感性作为输出进行评估。该模型还考虑了厄瓜多尔三个大陆地区(安第斯山脉、亚马逊地区和海岸)的地理和天气变化。我们使用了多种数据源来创建模型,包括厄瓜多尔公共卫生部的钩端螺旋体病记录、国家和国际文献以及专家意见,所有这些都被纳入了贝叶斯框架。通过敏感性分析,我们能够确定影响每个情景输出(CSU)敏感性的最关键参数。海岸地区的敏感性情况最好,中位数为 0.85%(95%CI 0.41-0.99),其次是亚马逊地区,中位数为 0.54%(95%CI 0.18-0.99),安第斯地区中位数为 0.29%(95%CI 0.02-0.89)。根据敏感性研究,对系统敏感性影响最大的标准是“就诊或去卫生中心的概率”和“出现症状的概率”,这对海岸和亚马逊地区尤为重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a61/8927665/135d8a9a49c8/fpubh-10-711938-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验