Suppr超能文献

基于Transformer的癫痫患者脑磁图高频振荡信号检测

Transformer-Based High-Frequency Oscillation Signal Detection on Magnetoencephalography From Epileptic Patients.

作者信息

Guo Jiayang, Xiao Naian, Li Hailong, He Lili, Li Qiyuan, Wu Ting, He Xiaonan, Chen Peizhi, Chen Duo, Xiang Jing, Peng Xueping

机构信息

Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.

Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.

出版信息

Front Mol Biosci. 2022 Mar 4;9:822810. doi: 10.3389/fmolb.2022.822810. eCollection 2022.

Abstract

High-frequency oscillations (HFOs), observed within 80-500 Hz of magnetoencephalography (MEG) data, are putative biomarkers to localize epileptogenic zones that are critical for the success of surgical epilepsy treatment. It is crucial to accurately detect HFOs for improving the surgical outcome of patients with epilepsy. However, in clinical practices, detecting HFOs in MEG signals mainly depends on visual inspection by clinicians, which is very time-consuming, labor-intensive, subjective, and error-prone. To accurately and automatically detect HFOs, machine learning approaches have been developed and have demonstrated the promising results of automated HFO detection. More recently, the transformer-based model has attracted wide attention and achieved state-of-the-art performance on many machine learning tasks. In this paper, we are investigating the suitability of transformer-based models on the detection of HFOs. Specifically, we propose a transformer-based HFO detection framework for biomedical MEG one-dimensional signal data. For signal classification, we develop a transformer-based HFO (TransHFO) classification model. Then, we investigate the relationship between depth of deep learning models and classification performance. The experimental results show that the proposed framework outperforms the state-of-the-art HFO classifiers, increasing classification accuracy by 7%. Furthermore, we find that shallow TransHFO ( 10 layers) outperforms deep TransHFO models (≥10 layers) on most data augmented factors.

摘要

在脑磁图(MEG)数据80 - 500赫兹范围内观察到的高频振荡(HFOs)是用于定位癫痫源区的假定生物标志物,这对于癫痫外科治疗的成功至关重要。准确检测HFOs对于改善癫痫患者的手术结果至关重要。然而,在临床实践中,检测MEG信号中的HFOs主要依赖于临床医生的目视检查,这非常耗时、费力、主观且容易出错。为了准确自动地检测HFOs,已经开发了机器学习方法,并展示了自动检测HFOs的良好结果。最近,基于Transformer的模型引起了广泛关注,并在许多机器学习任务中取得了领先性能。在本文中,我们正在研究基于Transformer的模型在检测HFOs方面的适用性。具体而言,我们为生物医学MEG一维信号数据提出了一个基于Transformer的HFO检测框架。对于信号分类,我们开发了一个基于Transformer的HFO(TransHFO)分类模型。然后,我们研究深度学习模型的深度与分类性能之间的关系。实验结果表明,所提出的框架优于当前最先进的HFO分类器,分类准确率提高了7%。此外,我们发现浅层TransHFO(<10层)在大多数数据增强因素上优于深层TransHFO模型(≥10层)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b62b/8931499/c3829d82a910/fmolb-09-822810-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验