Suppr超能文献

基于相位锁定值的机器学习方法识别脑电皮质电图中的癫痫发作起始区。

Identifying seizure onset zone from electrocorticographic recordings: A machine learning approach based on phase locking value.

机构信息

Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN, USA.

Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN, USA.

出版信息

Seizure. 2017 Oct;51:35-42. doi: 10.1016/j.seizure.2017.07.010. Epub 2017 Jul 25.

Abstract

PURPOSE

Using a novel technique based on phase locking value (PLV), we investigated the potential for features extracted from electrocorticographic (ECoG) recordings to serve as biomarkers to identify the seizure onset zone (SOZ).

METHODS

We computed the PLV between the phase of the amplitude of high gamma activity (80-150Hz) and the phase of lower frequency rhythms (4-30Hz) from ECoG recordings obtained from 10 patients with epilepsy (21 seizures). We extracted five features from the PLV and used a machine learning approach based on logistic regression to build a model that classifies electrodes as SOZ or non-SOZ.

RESULTS

More than 96% of electrodes identified as the SOZ by our algorithm were within the resected area in six seizure-free patients. In four non-seizure-free patients, more than 31% of the identified SOZ electrodes by our algorithm were outside the resected area. In addition, we observed that the seizure outcome in non-seizure-free patients correlated with the number of non-resected SOZ electrodes identified by our algorithm.

CONCLUSION

This machine learning approach, based on features extracted from the PLV, effectively identified electrodes within the SOZ. The approach has the potential to assist clinicians in surgical decision-making when pre-surgical intracranial recordings are utilized.

摘要

目的

利用一种基于相位锁定值(PLV)的新方法,我们研究了从脑电描记术(ECoG)记录中提取的特征是否可以作为生物标志物,以识别癫痫发作起始区(SOZ)。

方法

我们从 10 名癫痫患者(21 次癫痫发作)的 ECoG 记录中计算了高伽马活动(80-150Hz)幅度相位和低频节律(4-30Hz)相位之间的 PLV。我们从 PLV 中提取了五个特征,并使用基于逻辑回归的机器学习方法构建了一个模型,该模型可以将电极分类为 SOZ 或非 SOZ。

结果

在 6 名无癫痫发作的患者中,我们的算法识别的 SOZ 电极中,超过 96%位于切除区域内。在 4 名非无癫痫发作的患者中,我们的算法识别的 SOZ 电极中,超过 31%位于切除区域外。此外,我们观察到非无癫痫发作患者的癫痫发作结果与我们的算法识别的非切除 SOZ 电极数量相关。

结论

基于从 PLV 中提取的特征的这种机器学习方法有效地识别了 SOZ 内的电极。该方法在利用术前颅内记录进行手术决策时,有可能辅助临床医生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验