Suppr超能文献

使用决策树模型预测青少年足球运动中的主观用力程度评级

Predicting ratings of perceived exertion in youth soccer using decision tree models.

作者信息

Marynowicz Jakub, Lango Mateusz, Horna Damian, Kikut Karol, Andrzejewski Marcin

机构信息

Department of Theory and Methodology of Team Sport Games, Poznan University of Physical Education, Poznań, Poland.

KKS Lech Poznań S.A. - Football Club, Poznań, Poland.

出版信息

Biol Sport. 2022 Mar;39(2):245-252. doi: 10.5114/biolsport.2022.103723. Epub 2021 Apr 9.

Abstract

The purpose of this study was to determine the effectiveness of white-box decision tree models (DTM) for predicting the rating of perceived exertion (RPE). The second aim was to examine the relationship between RPE and external measures of intensity in youth soccer training at the group and individual level. Training load data from 18 youth soccer players were collected during an in-season competition period. A total of 804 training observations were undertaken, with a total of 43 ± 17 sessions per player (range 12-76). External measures of intensity were determined using a 10 Hz GPS and included total distance (TD, m/min), high-speed running distance (HSR, m/min), PlayerLoad (PL, n/min), impacts (n/min), distance in acceleration/deceleration (TD ACC/TD DEC, m/min) and the number of accelerations/decelerations (ACC/DEC, n/min). Data were analysed with decision tree models. Global and individualized models were constructed. Aggregated importance revealed HSR as the strongest predictor of RPE with relative importance of 0.61. HSR was the most important factor in predicting RPE for half of the players. The prediction error (root mean square error [RMSE] 0.755 ± 0.014) for the individualized models was lower compared to the population model (RMSE 1.621 ± 0.001). The findings demonstrate that individual models should be used for the assessment of players' response to external load. Furthermore, the study demonstrates that DTM provide straightforward interpretation, with the possibility of visualization. This method can be used to prescribe daily training loads on the basis of predicted, desired player responses (exertion).

摘要

本研究的目的是确定白盒决策树模型(DTM)在预测主观用力程度(RPE)方面的有效性。第二个目的是在青少年足球训练的群体和个体层面上,研究RPE与强度外部测量指标之间的关系。在赛季内比赛期间收集了18名青少年足球运动员的训练负荷数据。总共进行了804次训练观察,每名运动员的训练次数总计为43±17次(范围为12 - 76次)。使用10 Hz的GPS确定强度的外部测量指标,包括总距离(TD,米/分钟)、高速奔跑距离(HSR,米/分钟)、运动员负荷(PL,次/分钟)、碰撞次数(次/分钟)、加速/减速距离(TD ACC/TD DEC,米/分钟)以及加速/减速次数(ACC/DEC,次/分钟)。使用决策树模型对数据进行分析。构建了全局模型和个性化模型。综合重要性显示,HSR是RPE的最强预测指标,相对重要性为0.61。对于一半的运动员来说,HSR是预测RPE的最重要因素。与总体模型(均方根误差[RMSE] 1.621±0.001)相比,个性化模型的预测误差(RMSE 0.755±0.014)更低。研究结果表明,应使用个体模型来评估运动员对外部负荷的反应。此外,该研究表明DTM提供了直观的解释,并且具有可视化的可能性。这种方法可用于根据预测的、期望的运动员反应(用力程度)来规定每日训练负荷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1396/8919883/f8e6cfcef6e3/JBS-39-103723-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验