Berlet Reed, Galang Cabantan Dorothy Anne, Gonzales-Portillo Daniel, Borlongan Cesar V
Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.
Michigan State University College of Osteopathic Medicine, East Lansing, MI, United States.
Front Cell Dev Biol. 2022 Mar 3;10:798826. doi: 10.3389/fcell.2022.798826. eCollection 2022.
Stem cells, specifically embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), induced pluripotent stem cells (IPSCs), and neural progenitor stem cells (NSCs), are a possible treatment for stroke, Parkinson's disease (PD), and Huntington's disease (HD). Current preclinical data suggest stem cell transplantation is a potential treatment for these chronic conditions that lack effective long-term treatment options. Finding treatments with a wider therapeutic window and harnessing a disease-modifying approach will likely improve clinical outcomes. The overarching concept of stem cell therapy entails the use of immature cells, while key in recapitulating brain development and presents the challenge of young grafted cells forming neural circuitry with the mature host brain cells. To this end, exploring strategies designed to nurture graft-host integration will likely enhance the reconstruction of the elusive neural circuitry. Enriched environment (EE) and exercise facilitate stem cell graft-host reconstruction of neural circuitry. It may involve at least a two-pronged mechanism whereby EE and exercise create a conducive microenvironment in the host brain, allowing the newly transplanted cells to survive, proliferate, and differentiate into neural cells; vice versa, EE and exercise may also train the transplanted immature cells to learn the neurochemical, physiological, and anatomical signals in the brain towards better functional graft-host connectivity.
干细胞,特别是胚胎干细胞(ESC)、间充质干细胞(MSC)、诱导多能干细胞(iPSC)和神经祖干细胞(NSC),可能是治疗中风、帕金森病(PD)和亨廷顿病(HD)的方法。目前的临床前数据表明,干细胞移植是治疗这些缺乏有效长期治疗方案的慢性疾病的一种潜在方法。寻找具有更宽治疗窗口的治疗方法并采用疾病修饰方法可能会改善临床结果。干细胞治疗的总体概念需要使用未成熟细胞,这对于重现大脑发育至关重要,同时也带来了年轻移植细胞与成熟宿主脑细胞形成神经回路的挑战。为此,探索旨在促进移植-宿主整合的策略可能会增强难以捉摸的神经回路的重建。丰富环境(EE)和运动有助于干细胞移植-宿主神经回路的重建。这可能至少涉及一种双管齐下的机制,即EE和运动在宿主大脑中创造一个有利的微环境,使新移植的细胞能够存活、增殖并分化为神经细胞;反之亦然,EE和运动也可能训练移植的未成熟细胞学习大脑中的神经化学、生理和解剖信号,以实现更好的功能性移植-宿主连接。