Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA.
J Comput Aided Mol Des. 2018 Oct;32(10):1117-1138. doi: 10.1007/s10822-018-0168-0. Epub 2018 Nov 7.
Determining the net charge and protonation states populated by a small molecule in an environment of interest or the cost of altering those protonation states upon transfer to another environment is a prerequisite for predicting its physicochemical and pharmaceutical properties. The environment of interest can be aqueous, an organic solvent, a protein binding site, or a lipid bilayer. Predicting the protonation state of a small molecule is essential to predicting its interactions with biological macromolecules using computational models. Incorrectly modeling the dominant protonation state, shifts in dominant protonation state, or the population of significant mixtures of protonation states can lead to large modeling errors that degrade the accuracy of physical modeling. Low accuracy hinders the use of physical modeling approaches for molecular design. For small molecules, the acid dissociation constant (pK) is the primary quantity needed to determine the ionic states populated by a molecule in an aqueous solution at a given pH. As a part of SAMPL6 community challenge, we organized a blind pK prediction component to assess the accuracy with which contemporary pK prediction methods can predict this quantity, with the ultimate aim of assessing the expected impact on modeling errors this would induce. While a multitude of approaches for predicting pK values currently exist, predicting the pKs of drug-like molecules can be difficult due to challenging properties such as multiple titratable sites, heterocycles, and tautomerization. For this challenge, we focused on set of 24 small molecules selected to resemble selective kinase inhibitors-an important class of therapeutics replete with titratable moieties. Using a Sirius T3 instrument that performs automated acid-base titrations, we used UV absorbance-based pK measurements to construct a high-quality experimental reference dataset of macroscopic pKs for the evaluation of computational pK prediction methodologies that was utilized in the SAMPL6 pK challenge. For several compounds in which the microscopic protonation states associated with macroscopic pKs were ambiguous, we performed follow-up NMR experiments to disambiguate the microstates involved in the transition. This dataset provides a useful standard benchmark dataset for the evaluation of pK prediction methodologies on kinase inhibitor-like compounds.
确定小分子在感兴趣的环境中所带净电荷和质子化状态,或在转移到另一种环境时改变这些质子化状态的成本,是预测其物理化学和药物性质的前提。感兴趣的环境可以是水相、有机溶剂、蛋白质结合部位或脂质双层。预测小分子的质子化状态对于使用计算模型预测其与生物大分子的相互作用至关重要。错误地模拟主要质子化状态、主要质子化状态的转变或显著质子化状态混合物的分布,可能导致建模误差大,从而降低物理建模的准确性。低准确性阻碍了物理建模方法在分子设计中的应用。对于小分子,酸离解常数(pK)是在给定 pH 值的水溶液中确定分子所带离子状态所需的主要数量。作为 SAMPL6 社区挑战的一部分,我们组织了一个盲 pK 预测部分,以评估当代 pK 预测方法预测该数量的准确性,最终目的是评估这将对建模误差产生的预期影响。虽然目前存在多种预测 pK 值的方法,但由于具有多个可滴定位点、杂环和互变异构等挑战性性质,预测类药性分子的 pK 值可能很困难。在这项挑战中,我们专注于一组 24 个小分子,这些小分子被设计成类似于选择性激酶抑制剂——一种充满可滴定部分的重要治疗药物类别。我们使用自动酸碱滴定的 Sirius T3 仪器,通过基于紫外吸收的 pK 测量来构建用于评估计算 pK 预测方法的高质量宏观 pK 实验参考数据集,这些方法被用于 SAMPL6 pK 挑战。对于与宏观 pK 相关的微观质子化状态不明确的几个化合物,我们进行了后续的 NMR 实验以确定参与转变的微观状态。该数据集为评估激酶抑制剂类似物的 pK 预测方法提供了有用的标准基准数据集。