Roesner Emily K, Asheghali Darya, Kirillova Alina, Strauss Michael J, Evans Austin M, Becker Matthew L, Dichtel William R
Department of Chemistry, Northwestern University Evanston IL 60208 USA
Department of Chemistry, Duke University Durham NC 27708 USA
Chem Sci. 2022 Feb 3;13(8):2475-2480. doi: 10.1039/d1sc05932g. eCollection 2022 Feb 23.
Supramolecular nanotubes prepared through macrocycle assembly offer unique properties that stem from their long-range order, structural predictability, and tunable microenvironments. However, assemblies that rely on weak non-covalent interactions often have limited aspect ratios and poor mechanical integrity, which diminish their utility. Here pentagonal imine-linked macrocycles are prepared by condensing a pyridine-containing diamine and either terephthalaldehyde or 2,3,5,6-tetrafluoroterephthalaldehyde. Atomic force microscopy and synchrotron X-ray diffraction demonstrate that protonation of the pyridine groups drives assembly into high-aspect ratio nanotube assemblies. A 1 : 1 mixture of each macrocycle yielded nanotubes with enhanced crystallinity upon protonation. UV-Vis and fluorescence spectroscopy indicate that nanotubes containing both arene and perfluoroarene subunits display spectroscopic signatures of arene-perfluoroarene interactions. Touch-spun polymeric fibers containing assembled nanotubes prepared from the perhydro- or perfluorinated macrocycles exhibited Young's moduli of 1.09 and 0.49 GPa, respectively. Fibers containing nanotube assemblies reinforced by arene-perfluoroarene interactions yielded a 93% increase in the Young's modulus over the perhydro derivative, up to 2.1 GPa. These findings demonstrate that tuning the chemical composition of the monomeric macrocycles can have profound effects on the mechanical strength of the resulting assemblies. More broadly, these results will inspire future studies into tuning orthogonal non-covalent interactions between macrocycles to yield nanotubes with emergent functions and technological potential.
通过大环组装制备的超分子纳米管具有独特的性质,这些性质源于其长程有序性、结构可预测性和可调节的微环境。然而,依赖于弱非共价相互作用的组装体通常具有有限的长径比和较差的机械完整性,这降低了它们的实用性。在这里,通过使含吡啶的二胺与对苯二甲醛或2,3,5,6-四氟对苯二甲醛缩合来制备五边形亚胺连接的大环。原子力显微镜和同步加速器X射线衍射表明,吡啶基团的质子化驱动组装成高长径比的纳米管组装体。每种大环的1:1混合物在质子化后产生具有增强结晶度的纳米管。紫外-可见光谱和荧光光谱表明,同时含有芳烃和全氟芳烃亚基的纳米管显示出芳烃-全氟芳烃相互作用的光谱特征。由全氢化或全氟化大环制备的含组装纳米管的触摸纺丝聚合物纤维的杨氏模量分别为1.09和0.49 GPa。含有通过芳烃-全氟芳烃相互作用增强的纳米管组装体的纤维的杨氏模量比全氢化衍生物提高了93%,高达2.1 GPa。这些发现表明,调节单体大环的化学组成可以对所得组装体的机械强度产生深远影响。更广泛地说,这些结果将激发未来对调节大环之间正交非共价相互作用以产生具有新兴功能和技术潜力的纳米管的研究。