Strauss Michael J, Hwang Insu, Evans Austin M, Natraj Anusree, Aguilar-Enriquez Xavier, Castano Ioannina, Roesner Emily K, Choi Jang Wook, Dichtel William R
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
J Am Chem Soc. 2021 Oct 27;143(42):17655-17665. doi: 10.1021/jacs.1c08058. Epub 2021 Oct 14.
Supramolecular polymers are compelling platforms for the design of stimuli-responsive materials with emergent functions. Here, we report the assembly of an amphiphilic nanotube for Li-ion conduction that exhibits high ionic conductivity, mechanical integrity, electrochemical stability, and solution processability. Imine condensation of a pyridine-containing diamine with a triethylene glycol functionalized isophthalaldehyde yields pore-functionalized macrocycles. Atomic force microscopy, scanning electron microscopy, and X-ray diffraction reveal that macrocycle protonation during their mild synthesis drives assembly into high-aspect ratio (>10) nanotubes with three interior triethylene glycol groups. Electrochemical impedance spectroscopy demonstrates that lithiated nanotubes are efficient Li conductors, with an activation energy of 0.42 eV and a peak room temperature conductivity of 3.91 ± 0.38 × 10 S cm. Li NMR and Raman spectroscopy show that lithiation occurs exclusively within the nanotube interior and implicates the glycol groups in facilitating efficient Li transduction. Linear sweep voltammetry and galvanostatic lithium plating-stripping tests reveal that this nanotube-based electrolyte is stable over a wide potential range and supports long-term cyclability. These findings demonstrate how the coupling of synthetic design and supramolecular structural control can yield high-performance ionic transporters that are amenable to device-relevant fabrication, as well as the technological potential of chemically designed self-assembled nanotubes.
超分子聚合物是用于设计具有新兴功能的刺激响应材料的引人注目的平台。在此,我们报道了一种用于锂离子传导的两亲性纳米管的组装,该纳米管具有高离子电导率、机械完整性、电化学稳定性和溶液可加工性。含吡啶二胺与三甘醇官能化间苯二甲醛的亚胺缩合产生了孔功能化的大环化合物。原子力显微镜、扫描电子显微镜和X射线衍射表明,在温和合成过程中,大环化合物的质子化驱动其组装成具有三个内部三甘醇基团的高纵横比(>10)纳米管。电化学阻抗谱表明,锂化纳米管是高效的锂导体,活化能为0.42 eV,室温峰值电导率为3.91±0.38×10 S cm。锂核磁共振和拉曼光谱表明,锂化仅发生在纳米管内部,并表明二醇基团有助于高效的锂传导。线性扫描伏安法和恒电流锂电镀-剥离测试表明,这种基于纳米管的电解质在很宽的电位范围内是稳定 的,并支持长期循环性。这些发现证明了合成设计与超分子结构控制的结合如何能够产生适用于与器件相关制造的高性能离子传输体,以及化学设计的自组装纳米管的技术潜力。