Ramlal Vishwakarma Ravikumar, Selvasundarasekar Sam Sankar, Singh Akanksha, Ankola Jenil, Lo Rabindranath, Kundu Subrata, Mandal Amal Kumar
Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute Bhavnagar Gujarat-364002 India
Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India.
Chem Sci. 2025 Jun 3. doi: 10.1039/d5sc00159e.
The emergence of wearable devices has led to a greater need for battery materials that are safe, resilient, and exhibit high levels of ionic conductivity. Here, we present a supramolecular design as a useful tactic through fine tuning of the noncovalent interactions to overcome the standard trade-off in solid state Li-ion conductors between ionic conductivity and mechanical resilience. We report solution processable self-assembled organic nanowires (SONs) with varying supramolecular interactions through structural mutation to boost Li-ion conductivity and mechanical integrity. The findings indicate that precise H-bonding plays a crucial role in achieving a maximum Young's modulus (1050.5 ± 38 MPa) and toughness (15 666 ± 423 kJ m), surpassing the impact of the number of H-bonding sites. The highly structured H-bonded morphology facilitated the creation of binding pockets, enhancing lithiation, in achieving the highest ionic conductivity (3.12 × 10 S cm) with a Li-ion transference number of 0.8 at 298 K. The molecular dynamics simulation demonstrates that, among the various interaction sites, the hopping of Li-ions through the axial pathway is favoured over the planar pathway. This study represents a pioneering example illustrating the methodology behind the impact of noncovalent interactions within nanoscale assemblies on the ion conductivity and mechanical characteristics of supramolecular Li-ion conductors.
可穿戴设备的出现使得对安全、耐用且具有高离子电导率的电池材料的需求更大。在此,我们提出一种超分子设计,作为一种有用的策略,通过微调非共价相互作用来克服固态锂离子导体在离子电导率和机械韧性之间的标准权衡。我们报道了通过结构突变具有不同超分子相互作用的可溶液加工的自组装有机纳米线(SONs),以提高锂离子电导率和机械完整性。研究结果表明,精确的氢键在实现最大杨氏模量(1050.5±38MPa)和韧性(15666±423kJ m)方面起着关键作用,超过了氢键位点数量的影响。高度结构化的氢键形态促进了结合口袋的形成,增强了锂化作用,在298K时实现了最高离子电导率(3.12×10 S cm),锂离子迁移数为0.8。分子动力学模拟表明,在各种相互作用位点中,锂离子通过轴向路径的跳跃比平面路径更有利。这项研究代表了一个开创性的例子,说明了纳米级组装体中非共价相互作用对超分子锂离子导体的离子电导率和机械特性影响背后的方法。