Kaur Sukhvinder, Karmakar Subhajit, Jana Arun, Rane Shreeya, Varshney Ravendra Kumar, Roy Chowdhury Dibakar
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Department of Physics, Ecole Centrale School of Engineering - Mahindra University, Jeedimetla, Hyderabad, Telangana 500043, India.
iScience. 2022 Mar 4;25(4):104024. doi: 10.1016/j.isci.2022.104024. eCollection 2022 Apr 15.
Coupled resonant cavities can enable strong photon energy confinement to facilitate the miniaturization of functional photonic devices for applications in designs of sensors, modulators, couplers, waveguides, color filters etc. Typically, the resonances in subwavelength plasmonic cavities rely on the excitation of surface plasmons at specific phase-matching conditions, usually determined by the lattice parameters and constituent material properties. Contrary to this notion, we experimentally demonstrate the control and manipulation of cavity resonances via suitably modifying the split ring resonator geometry in hybrid plasmonic-metasurface (dipole cavity-SRR) configuration without altering the lattice parameters. This results to the excitation of dual resonance peaks. Such dual channel characteristics demonstrate high quality () factor, multi-band resonances, not permissible with typical (unhybridized) plasmonic dipole cavities. We envisage such hybrid meta-cavity designs can become important ingredients for futuristic terahertz devices that can hold the key for sixth generation (6G) communications, designer filters, dual channel sensors etc.
耦合谐振腔能够实现强大的光子能量限制,从而便于功能光子器件的小型化,以应用于传感器、调制器、耦合器、波导、滤色器等的设计中。通常,亚波长等离子体腔中的共振依赖于在特定相位匹配条件下表面等离子体的激发,这通常由晶格参数和组成材料特性决定。与这一概念相反,我们通过在混合等离子体超表面(偶极腔-分裂环谐振器)配置中适当地修改分裂环谐振器的几何形状,而不改变晶格参数,通过实验证明了对腔共振的控制和操纵。这导致了双共振峰的激发。这种双通道特性展示了高品质()因子、多波段共振,这是典型的(未混合的)等离子体偶极腔所不具备的。我们设想,这种混合元腔设计可以成为未来太赫兹器件的重要组成部分,这些器件可能是第六代(6G)通信、定制滤波器、双通道传感器等的关键。