Suppr超能文献

各向异性等离子体超表面中的连续统束缚态

Bound States in the Continuum in Anisotropic Plasmonic Metasurfaces.

作者信息

Liang Yao, Koshelev Kirill, Zhang Fengchun, Lin Han, Lin Shirong, Wu Jiayang, Jia Baohua, Kivshar Yuri

机构信息

Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.

Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia.

出版信息

Nano Lett. 2020 Sep 9;20(9):6351-6356. doi: 10.1021/acs.nanolett.0c01752. Epub 2020 Jun 10.

Abstract

The concept of optical bound states in the continuum (BICs) currently drives the field of dielectric resonant nanophotonics, providing an important physical mechanism for engineering high-quality (high-Q) optical resonances in high-index dielectric nanoparticles and structured dielectric metasurfaces. For structured metallic metasurfaces, realization of BICs remains a challenge associated with strong dissipative losses of plasmonic materials. Here, we suggest and realize experimentally supporting high-Q resonances governed by quasi-BIC collective resonant modes. Our metasurfaces are composed of arrays of vertically oriented double-pillar meta-molecules covered by a thin layer of gold. We engineer quasi-BIC modes and observe experimentally sharp resonances in mid-IR reflectance spectra. Our work suggests a direct route to boost the resonant field enhancement in plasmonic metasurfaces via combining a small effective mode volume of plasmonic systems with engineered high-Q resonances provided by the BIC physics, with multiple applications to enhance light-matter interaction for nano-optics and quantum photonics.

摘要

连续域中的光学束缚态(BICs)概念目前推动着介电共振纳米光子学领域的发展,为在高折射率介电纳米颗粒和结构化介电超表面中设计高质量(高Q值)光学共振提供了重要的物理机制。对于结构化金属超表面,实现BICs仍然是一个与等离子体材料的强耗散损耗相关的挑战。在这里,我们提出并通过实验实现了由准BIC集体共振模式主导的高Q值共振。我们的超表面由垂直排列的双柱元分子阵列组成,并覆盖有一层薄金。我们设计了准BIC模式,并在中红外反射光谱中通过实验观察到了尖锐的共振。我们的工作提出了一条直接途径,通过将等离子体系统的小有效模式体积与BIC物理提供的工程高Q值共振相结合,来提高等离子体超表面中的共振场增强,这在增强纳米光学和量子光子学中的光-物质相互作用方面有多种应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验