Department of Biological Sciences, Vanderbilt Universitygrid.152326.1, Nashville, Tennessee, USA.
Department of Biomedical Informatics, Vanderbilt Universitygrid.152326.1 School of Medicine, Nashville, Tennessee, USA.
mBio. 2022 Apr 26;13(2):e0329721. doi: 10.1128/mbio.03297-21. Epub 2022 Mar 21.
Unique DNA repair enzymes that provide self-resistance against therapeutically important, genotoxic natural products have been discovered in bacterial biosynthetic gene clusters (BGCs). Among these, the DNA glycosylase AlkZ is essential for azinomycin B production and belongs to the HTH_42 superfamily of uncharacterized proteins. Despite their widespread existence in antibiotic producers and pathogens, the roles of these proteins in production of other natural products are unknown. Here, we determine the evolutionary relationship and genomic distribution of all HTH_42 proteins from and use a resistance-based genome mining approach to identify homologs associated with known and uncharacterized BGCs. We find that AlkZ-like (AZL) proteins constitute one distinct HTH_42 subfamily and are highly enriched in BGCs and variable in sequence, suggesting each has evolved to protect against a specific secondary metabolite. As a validation of the approach, we show that the AZL protein, HedH4, associated with biosynthesis of the alkylating agent hedamycin, excises hedamycin-DNA adducts with exquisite specificity and provides resistance to the natural product in cells. We also identify a second, phylogenetically and functionally distinct subfamily whose proteins are never associated with BGCs, are highly conserved with respect to sequence and genomic neighborhood, and repair DNA lesions not associated with a particular natural product. This work delineates two related families of DNA repair enzymes-one specific for complex alkyl-DNA lesions and involved in self-resistance to antimicrobials and the other likely involved in protection against an array of genotoxins-and provides a framework for targeted discovery of new genotoxic compounds with therapeutic potential. Bacteria are rich sources of secondary metabolites that include DNA-damaging genotoxins with antitumor/antibiotic properties. Although produce a diverse number of therapeutic genotoxins, efforts toward targeted discovery of biosynthetic gene clusters (BGCs) producing DNA-damaging agents is lacking. Moreover, work on toxin-resistance genes has lagged behind our understanding of those involved in natural product synthesis. Here, we identified over 70 uncharacterized BGCs producing potentially novel genotoxins through resistance-based genome mining using the azinomycin B-resistance DNA glycosylase AlkZ. We validate our analysis by characterizing the enzymatic activity and cellular resistance of one AlkZ ortholog in the BGC of hedamycin, a potent DNA alkylating agent. Moreover, we uncover a second, phylogenetically distinct family of proteins related to Escherichia coli YcaQ, a DNA glycosylase capable of unhooking interstrand DNA cross-links, which differs from the AlkZ-like family in sequence, genomic location, proximity to BGCs, and substrate specificity. This work defines two families of DNA glycosylase for specialized repair of complex genotoxic natural products and generalized repair of a broad range of alkyl-DNA adducts and provides a framework for targeted discovery of new compounds with therapeutic potential.
在细菌生物合成基因簇 (BGC) 中发现了具有独特 DNA 修复酶的基因簇,这些酶可以提供针对治疗上重要的、遗传毒性天然产物的自我抗性。其中,DNA 糖苷酶 AlkZ 对阿霉素 B 的产生至关重要,属于未鉴定的 HTH_42 超家族蛋白。尽管这些蛋白在抗生素产生菌和病原体中广泛存在,但它们在其他天然产物产生中的作用尚不清楚。在这里,我们确定了所有来自 的 HTH_42 蛋白的进化关系和基因组分布,并使用基于抗性的基因组挖掘方法来鉴定与已知和未鉴定 BGC 相关的同源物。我们发现 AlkZ 样 (AZL) 蛋白构成了一个独特的 HTH_42 亚家族,在 BGC 中高度富集且序列多样,表明每个蛋白都进化为针对特定的次级代谢产物提供保护。作为该方法的验证,我们表明与烷基化剂 hedamycin 生物合成相关的 AZL 蛋白 HedH4 具有高度特异性地切除 hedamycin-DNA 加合物,并在细胞中提供对天然产物的抗性。我们还鉴定了第二个、在系统发育和功能上都不同的亚家族,其蛋白从未与 BGC 相关,在序列和基因组邻近性方面高度保守,并且修复与特定天然产物无关的 DNA 损伤。这项工作描绘了两种相关的 DNA 修复酶家族——一种针对复杂的烷基-DNA 损伤,参与微生物自我抗性,另一种可能参与对一系列遗传毒素的保护——并为具有治疗潜力的新型遗传毒素化合物的靶向发现提供了框架。 细菌是丰富的次级代谢产物的来源,其中包括具有抗肿瘤/抗生素特性的 DNA 损伤遗传毒素。尽管 产生了多种治疗性遗传毒素,但针对产生 DNA 损伤剂的生物合成基因簇 (BGC) 的靶向发现工作却缺乏。此外,对毒素抗性基因的研究落后于我们对天然产物合成相关基因的理解。在这里,我们通过使用阿霉素 B 抗性 DNA 糖苷酶 AlkZ 进行基于抗性的基因组挖掘,鉴定了 70 多个未鉴定的 BGC,这些 BGC 可能产生新的遗传毒素。我们通过鉴定 hedamycin BGC 中 AlkZ 同源物的酶活性和细胞抗性来验证我们的分析,hedamycin 是一种有效的 DNA 烷化剂。此外,我们还发现了第二个与大肠杆菌 YcaQ 相关的、在系统发育上不同的蛋白家族,YcaQ 是一种能够解开链间 DNA 交联的 DNA 糖苷酶,它在序列、基因组位置、与 BGC 的接近程度以及底物特异性方面与 AlkZ 样家族不同。这项工作定义了两种用于专门修复复杂遗传毒素天然产物和广泛修复各种烷基-DNA 加合物的 DNA 糖苷酶家族,并为具有治疗潜力的新型化合物的靶向发现提供了框架。