Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232.
Center for Structural Biology, Vanderbilt University, Nashville, TN 37232.
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4400-4405. doi: 10.1073/pnas.1703066114. Epub 2017 Apr 10.
DNA glycosylases are important editing enzymes that protect genomic stability by excising chemically modified nucleobases that alter normal DNA metabolism. These enzymes have been known only to initiate base excision repair of small adducts by extrusion from the DNA helix. However, recent reports have described both vertebrate and microbial DNA glycosylases capable of unhooking highly toxic interstrand cross-links (ICLs) and bulky minor groove adducts normally recognized by Fanconi anemia and nucleotide excision repair machinery, although the mechanisms of these activities are unknown. Here we report the crystal structure of AlkZ (previously Orf1), a bacterial DNA glycosylase that protects its host by excising ICLs derived from azinomycin B (AZB), a potent antimicrobial and antitumor genotoxin. AlkZ adopts a unique fold in which three tandem winged helix-turn-helix motifs scaffold a positively charged concave surface perfectly shaped for duplex DNA. Through mutational analysis, we identified two glutamine residues and a β-hairpin within this putative DNA-binding cleft that are essential for catalytic activity. Additionally, we present a molecular docking model for how this active site can unhook either or both sides of an AZB ICL, providing a basis for understanding the mechanisms of base excision repair of ICLs. Given the prevalence of this protein fold in pathogenic bacteria, this work also lays the foundation for an emerging role of DNA repair in bacteria-host pathogenesis.
DNA 糖苷酶是重要的编辑酶,通过切除改变正常 DNA 代谢的化学修饰碱基来保护基因组稳定性。这些酶仅被认为能够通过从 DNA 螺旋中挤出,启动小加合物的碱基切除修复。然而,最近的报道描述了脊椎动物和微生物 DNA 糖苷酶,它们能够解开高度毒性的链间交联(ICLs)和通常由范可尼贫血和核苷酸切除修复机制识别的大的小沟加合物,尽管这些活性的机制尚不清楚。在这里,我们报告了 AlkZ(以前称为 Orf1)的晶体结构,AlkZ 是一种细菌 DNA 糖苷酶,通过切除来自氮霉素 B(AZB)的 ICL 来保护其宿主,AZB 是一种有效的抗菌和抗肿瘤遗传毒素。AlkZ 采用独特的折叠方式,三个串联的翼状螺旋-转角-螺旋基序构成了一个带正电荷的凹面,非常适合双链 DNA。通过突变分析,我们在这个假定的 DNA 结合裂隙中鉴定出两个谷氨酰胺残基和一个β发夹,它们对催化活性至关重要。此外,我们提出了一个分子对接模型,说明这个活性位点如何解开 AZB ICL 的一侧或两侧,为理解 ICL 的碱基切除修复机制提供了基础。鉴于这种蛋白质折叠在致病性细菌中的普遍性,这项工作也为细菌-宿主发病机制中 DNA 修复的新兴作用奠定了基础。