Li Hang, Gan Yulin, Husanu Marius-Adrian, Dahm Rasmus Tindal, Christensen Dennis Valbjørn, Radovic Milan, Sun Jirong, Shi Ming, Shen Baogen, Pryds Nini, Chen Yunzhong
Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, PSI, Switzerland.
ACS Nano. 2022 Apr 26;16(4):6437-6443. doi: 10.1021/acsnano.2c00609. Epub 2022 Mar 21.
The electronic structure as well as the mechanism underlying the high-mobility two-dimensional electron gases (2DEGs) at complex oxide interfaces remain elusive. Herein, using soft X-ray angle-resolved photoemission spectroscopy (ARPES), we present the band dispersion of metallic states at buffered LaAlO/SrTiO (LAO/STO) heterointerfaces where a single-unit-cell LaMnO (LMO) spacer not only enhances the electron mobility but also renders the electronic structure robust toward X-ray radiation. By tracing the evolution of band dispersion, orbital occupation, and electron-phonon interaction of the interfacial 2DEG, we find unambiguous evidence that the insertion of the LMO buffer strongly suppresses both the formation of oxygen vacancies as well as the electron-phonon interaction on the STO side. The latter effect makes the buffered sample different from any other STO-based interfaces and may explain the maximum mobility enhancement achieved at buffered oxide interfaces.
复杂氧化物界面处高迁移率二维电子气(2DEG)的电子结构及其 underlying 机制仍然难以捉摸。在此,我们使用软X射线角分辨光电子能谱(ARPES),展示了缓冲的LaAlO/SrTiO(LAO/STO)异质界面处金属态的能带色散,其中单胞LaMnO(LMO)间隔层不仅提高了电子迁移率,还使电子结构对X射线辐射具有鲁棒性。通过追踪界面2DEG的能带色散、轨道占据和电子-声子相互作用的演变,我们发现明确的证据表明,LMO缓冲层的插入强烈抑制了氧空位的形成以及STO一侧的电子-声子相互作用。后一种效应使得缓冲样品不同于任何其他基于STO的界面,并且可能解释了在缓冲氧化物界面处实现的最大迁移率增强。