School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2050, United States.
Birck Nanotechnology Research Center, Purdue University, West Lafayette, Indiana 47907-2050, United States.
Langmuir. 2022 Apr 5;38(13):4014-4027. doi: 10.1021/acs.langmuir.2c00008. Epub 2022 Mar 21.
Despite the great advancement and wide use of titanium (Ti) and Ti-based alloys in different orthopedic implants, device-related infections remain the major complication in modern orthopedic and trauma surgery. Most of these infections are often caused by both poor antibacterial and osteoinductive properties of the implant surface. Here, we have demonstrated a facile two-step laser nanotexturing and immobilization of silver onto the titanium implants to improve both cellular integration and antibacterial properties of Ti surfaces. The required threshold laser processing power for effective nanotexturing and osseointegration was systematically determined by the level of osteoblast cells mineralized on the laser nanotextured Ti (LN-Ti) surfaces using a neodymium-doped yttrium aluminum garnet laser (Nd:YAG, wavelength of 1.06 μm). Laser processing powers above 24 W resulted in the formation of hierarchical nanoporous structures (average pore 190 nm) on the Ti surface with a 2.5-fold increase in osseointegration as compared to the pristine Ti surface. Immobilization of silver nanoparticles onto the LN-Ti surface was conducted by dip coating in an aqueous silver ionic solution and subsequently converted to silver nanoparticles (AgNPs) by using a low power laser-assisted photocatalytic reduction process. Structural and surface morphology analysis via XRD and SEM revealed a uniform distribution of Ag and the formation of an AgTi-alloy interface on the Ti surface. The antibacterial efficacy of the LN-Ti with laser immobilized silver (LN-Ti/LI-Ag) was tested against both Gram-positive () and Gram-negative () bacteria. The LN-Ti/LI-Ag surface was observed to have efficient and stable antimicrobial properties for over 6 days. In addition, it was found that the LN-Ti/LI-Ag maintained a cytocompatibility and bone cell mineralization property similar to the LN-Ti surface. The differential toxicity of the LN-Ti/LI-Ag between bacterial and cellular species qualifies this approach as a promising candidate for novel rapid surface modification of biomedical metal implants.
尽管钛(Ti)和 Ti 基合金在不同的骨科植入物中得到了广泛的应用和发展,但与器械相关的感染仍然是现代骨科和创伤外科的主要并发症。这些感染大多是由于植入物表面的抗菌和骨诱导性能差引起的。在这里,我们展示了一种简便的两步法激光纳米织构化和银的固定,以提高 Ti 表面的细胞整合和抗菌性能。使用掺钕钇铝石榴石激光(Nd:YAG,波长 1.06μm),通过在激光纳米织构化 Ti(LN-Ti)表面上矿化的成骨细胞的水平,系统地确定了有效纳米织构化和骨整合所需的阈值激光处理功率。激光处理功率高于 24W 会在 Ti 表面上形成分级纳米多孔结构(平均孔径 190nm),与原始 Ti 表面相比,骨整合增加了 2.5 倍。通过将 LN-Ti 表面浸入银离子溶液中进行浸涂,然后通过低功率激光辅助光催化还原过程将银纳米粒子固定在 LN-Ti 表面上。通过 XRD 和 SEM 进行的结构和表面形貌分析表明,Ag 均匀分布在 Ti 表面上,并形成了 AgTi 合金界面。对 LN-Ti 表面进行激光固定银(LN-Ti/LI-Ag)的抗菌效果进行了测试,包括革兰氏阳性菌()和革兰氏阴性菌()。LN-Ti/LI-Ag 表面具有高效和稳定的抗菌性能,超过 6 天。此外,研究发现 LN-Ti/LI-Ag 保持了与 LN-Ti 表面相似的细胞相容性和骨细胞矿化性能。LN-Ti/LI-Ag 在细菌和细胞物种之间的差异毒性使这种方法成为生物医学金属植入物新型快速表面改性的有前途的候选方法。
ACS Appl Mater Interfaces. 2019-10-17
J Mater Sci Mater Med. 2022-6-23
ACS Appl Mater Interfaces. 2020-5-27
Int J Nanomedicine. 2010-4-15
Mater Sci Eng C Mater Biol Appl. 2014-12
Mater Sci Eng C Mater Biol Appl. 2017-6-1
Biomedicines. 2024-7-23
Biometals. 2024-8