Tan Hongchen, Liu Xiuping, Yin Baocai, Li Xin
IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):8210-8224. doi: 10.1109/TNNLS.2022.3144163. Epub 2023 Oct 27.
This article presents a novel person reidentification model, named multihead self-attention network (MHSA-Net), to prune unimportant information and capture key local information from person images. MHSA-Net contains two main novel components: multihead self-attention branch (MHSAB) and attention competition mechanism (ACM). The MHSAB adaptively captures key local person information and then produces effective diversity embeddings of an image for the person matching. The ACM further helps filter out attention noise and nonkey information. Through extensive ablation studies, we verified that the MHSAB and ACM both contribute to the performance improvement of the MHSA-Net. Our MHSA-Net achieves competitive performance in the standard and occluded person Re-ID tasks.
本文提出了一种名为多头自注意力网络(MHSA-Net)的新型人物重识别模型,用于修剪不重要的信息并从人物图像中捕获关键局部信息。MHSA-Net包含两个主要的新颖组件:多头自注意力分支(MHSAB)和注意力竞争机制(ACM)。MHSAB自适应地捕获关键局部人物信息,然后生成用于人物匹配的图像有效多样性嵌入。ACM进一步有助于滤除注意力噪声和非关键信息。通过广泛的消融研究,我们验证了MHSAB和ACM都有助于提高MHSA-Net的性能。我们的MHSA-Net在标准和遮挡人物重识别任务中取得了有竞争力的性能。