Suppr超能文献

甲状腺网络:一种用于甲状腺结节定位与分类的深度学习网络。

ThyroidNet: A Deep Learning Network for Localization and Classification of Thyroid Nodules.

作者信息

Chen Lu, Chen Huaqiang, Pan Zhikai, Xu Sheng, Lai Guangsheng, Chen Shuwen, Wang Shuihua, Gu Xiaodong, Zhang Yudong

机构信息

Ultrasonic Department, Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China.

School of Physics and Information Engineering, Jiangsu Second Normal University, Nanjing, 211200, China.

出版信息

Comput Model Eng Sci. 2023 Dec 30;139(1):361-382. doi: 10.32604/cmes.2023.031229.

Abstract

AIM

This study aims to establish an artificial intelligence model, ThyroidNet, to diagnose thyroid nodules using deep learning techniques accurately.

METHODS

A novel method, ThyroidNet, is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules. First, we propose the multitask TransUnet, which combines the TransUnet encoder and decoder with multitask learning. Second, we propose the DualLoss function, tailored to the thyroid nodule localization and classification tasks. It balances the learning of the localization and classification tasks to help improve the model's generalization ability. Third, we introduce strategies for augmenting the data. Finally, we submit a novel deep learning model, ThyroidNet, to accurately detect thyroid nodules.

RESULTS

ThyroidNet was evaluated on private datasets and was comparable to other existing methods, including U-Net and TransUnet. Experimental results show that ThyroidNet outperformed these methods in localizing and classifying thyroid nodules. It achieved improved accuracy of 3.9% and 1.5%, respectively.

CONCLUSION

ThyroidNet significantly improves the clinical diagnosis of thyroid nodules and supports medical image analysis tasks. Future research directions include optimization of the model structure, expansion of the dataset size, reduction of computational complexity and memory requirements, and exploration of additional applications of ThyroidNet in medical image analysis.

摘要

目的

本研究旨在建立一种人工智能模型ThyroidNet,利用深度学习技术准确诊断甲状腺结节。

方法

介绍并评估了一种基于深度学习的甲状腺结节定位和分类新方法ThyroidNet。首先,我们提出了多任务TransUnet,它将TransUnet编码器和解码器与多任务学习相结合。其次,我们提出了DualLoss函数,该函数针对甲状腺结节定位和分类任务进行了定制。它平衡了定位和分类任务的学习,以帮助提高模型的泛化能力。第三,我们介绍了数据增强策略。最后,我们提交了一种新颖的深度学习模型ThyroidNet,以准确检测甲状腺结节。

结果

ThyroidNet在私有数据集上进行了评估,与包括U-Net和TransUnet在内的其他现有方法相当。实验结果表明,ThyroidNet在甲状腺结节的定位和分类方面优于这些方法。它分别提高了3.9%和1.5%的准确率。

结论

ThyroidNet显著改善了甲状腺结节的临床诊断,并支持医学图像分析任务。未来的研究方向包括模型结构的优化、数据集规模的扩大、计算复杂度和内存需求的降低,以及探索ThyroidNet在医学图像分析中的其他应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1a/7615790/96c30bb42e87/EMS194934-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验