Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, United Kingdom.
Evolution. 2022 May;76(5):870-882. doi: 10.1111/evo.14476. Epub 2022 Mar 30.
Camouflage research has long shaped our understanding of evolution by natural selection, and elucidating the mechanisms by which camouflage operates remains a key question in visual ecology. However, the vast diversity of color patterns found in animals and their backgrounds, combined with the scope for complex interactions with receiver vision, presents a fundamental challenge for investigating optimal camouflage strategies. Genetic algorithms (GAs) have provided a potential method for accounting for these interactions, but with limited accessibility. Here, we present CamoEvo, an open-access toolbox for investigating camouflage pattern optimization by using tailored GAs, animal and egg maculation theory, and artificial predation experiments. This system allows for camouflage evolution within the span of just 10-30 generations (∼1-2 min per generation), producing patterns that are both significantly harder to detect and that are optimized to their background. CamoEvo was built in ImageJ to allow for integration with an array of existing open access camouflage analysis tools. We provide guides for editing and adjusting the predation experiment and GA as well as an example experiment. The speed and flexibility of this toolbox makes it adaptable for a wide range of computer-based phenotype optimization experiments.
伪装研究长期以来一直塑造着我们对自然选择进化的理解,阐明伪装的作用机制仍然是视觉生态学中的一个关键问题。然而,动物及其背景中存在的大量颜色图案的多样性,加上与接收者视觉进行复杂相互作用的范围,给研究最佳伪装策略带来了根本性的挑战。遗传算法 (GA) 为解释这些相互作用提供了一种潜在的方法,但可及性有限。在这里,我们提出了 CamoEvo,这是一个用于通过使用定制的 GA、动物和卵斑理论以及人工捕食实验来研究伪装图案优化的开放获取工具包。该系统允许在短短 10-30 代(每代约 1-2 分钟)内进行伪装进化,产生的图案不仅更难被发现,而且还针对其背景进行了优化。CamoEvo 是在 ImageJ 中构建的,以允许与一系列现有的开放获取伪装分析工具集成。我们提供了编辑和调整捕食实验和 GA 的指南,以及一个示例实验。该工具包的速度和灵活性使其适应于广泛的基于计算机的表型优化实验。