School of Psychological Science, University of Bristol, Bristol, UK.
School of Biological Sciences, University of Bristol, Bristol, UK.
Evolution. 2021 Mar;75(3):614-624. doi: 10.1111/evo.14162. Epub 2021 Jan 18.
Evolutionary biologists frequently wish to measure the fitness of alternative phenotypes using behavioral experiments. However, many phenotypes are complex. One example is coloration: camouflage aims to make detection harder, while conspicuous signals (e.g., for warning or mate attraction) require the opposite. Identifying the hardest and easiest to find patterns is essential for understanding the evolutionary forces that shape protective coloration, but the parameter space of potential patterns (colored visual textures) is vast, limiting previous empirical studies to a narrow range of phenotypes. Here, we demonstrate how deep learning combined with genetic algorithms can be used to augment behavioral experiments, identifying both the best camouflage and the most conspicuous signal(s) from an arbitrarily vast array of patterns. To show the generality of our approach, we do so for both trichromatic (e.g., human) and dichromatic (e.g., typical mammalian) visual systems, in two different habitats. The patterns identified were validated using human participants; those identified as the best for camouflage were significantly harder to find than a tried-and-tested military design, while those identified as most conspicuous were significantly easier to find than other patterns. More generally, our method, dubbed the "Camouflage Machine," will be a useful tool for identifying the optimal phenotype in high dimensional state spaces.
进化生物学家经常希望通过行为实验来衡量替代表型的适应性。然而,许多表型是复杂的。例如,颜色:伪装的目的是使探测变得更难,而显眼的信号(例如,用于警告或求偶吸引)则需要相反的效果。确定最难找到和最容易找到的图案对于理解塑造保护色的进化力量至关重要,但是潜在图案(彩色视觉纹理)的参数空间非常大,这限制了以前的经验研究仅限于狭窄的表型范围。在这里,我们展示了如何结合深度学习和遗传算法来增强行为实验,从任意庞大的图案集中识别出最佳的伪装和最显眼的信号。为了展示我们方法的通用性,我们在两个不同的栖息地中,对三原色(例如,人类)和二色(例如,典型的哺乳动物)视觉系统都进行了研究。使用人类参与者对识别出的图案进行验证;被确定为最佳伪装的图案比经过试验和测试的军事设计更难找到,而被确定为最显眼的图案则比其他图案更容易找到。更一般地说,我们的方法,称为“伪装机器”,将成为在高维状态空间中识别最佳表型的有用工具。