Suppr超能文献

在野生捕食者的选择下,对视觉模式进行人工进化的遗传算法的适应性。

Adapting genetic algorithms for artificial evolution of visual patterns under selection from wild predators.

机构信息

Faculty of Environment, Centre for Ecology and Conservation, Science and Economy, University of Exeter, Penryn, Cornwall, United Kingdom.

Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.

出版信息

PLoS One. 2024 May 16;19(5):e0295106. doi: 10.1371/journal.pone.0295106. eCollection 2024.

Abstract

Camouflage is a widespread and well-studied anti-predator strategy, yet identifying which patterns provide optimal protection in any given scenario remains challenging. Besides the virtually limitless combinations of colours and patterns available to prey, selection for camouflage strategies will depend on complex interactions between prey appearance, background properties and predator traits, across repeated encounters between co-evolving predators and prey. Experiments in artificial evolution, pairing psychophysics detection tasks with genetic algorithms, offer a promising way to tackle this complexity, but sophisticated genetic algorithms have so far been restricted to screen-based experiments. Here, we present methods to test the evolution of colour patterns on physical prey items, under selection from wild predators in the field. Our techniques expand on a recently-developed open-access pattern generation and genetic algorithm framework, modified to operate alongside artificial predation experiments. In this system, predators freely interact with prey, and the order of attack determines the survival and reproduction of prey patterns into future generations. We demonstrate the feasibility of these methods with a case study, in which free-flying birds feed on artificial prey deployed in semi-natural conditions, against backgrounds differing in three-dimensional complexity. Wild predators reliably participated in this experiment, foraging for 11 to 16 generations of artificial prey and encountering a total of 1,296 evolved prey items. Changes in prey pattern across generations indicated improvements in several metrics of similarity to the background, and greater edge disruption, although effect sizes were relatively small. Computer-based replicates of these trials, with human volunteers, highlighted the importance of starting population parameters for subsequent evolution, a key consideration when applying these methods. Ultimately, these methods provide pathways for integrating complex genetic algorithms into more naturalistic predation trials. Customisable open-access tools should facilitate application of these tools to investigate a wide range of visual pattern types in more ecologically-relevant contexts.

摘要

伪装是一种广泛而深入研究的反捕食策略,但在任何给定情况下确定哪种模式提供最佳保护仍然具有挑战性。除了猎物可用的颜色和图案的几乎无限组合外,伪装策略的选择还将取决于猎物外观、背景特性和捕食者特征之间的复杂相互作用,这些相互作用发生在共同进化的捕食者和猎物之间的反复遭遇中。将心理物理学检测任务与遗传算法配对的人工进化实验提供了一种解决这种复杂性的有前途的方法,但复杂的遗传算法迄今为止仅限于基于屏幕的实验。在这里,我们提出了在野外捕食者选择下,在物理猎物上测试颜色图案进化的方法。我们的技术扩展了最近开发的开源图案生成和遗传算法框架,该框架经过修改后可与人工捕食实验一起运行。在这个系统中,捕食者可以自由地与猎物互动,攻击的顺序决定了猎物图案在未来几代中的生存和繁殖。我们通过一个案例研究证明了这些方法的可行性,在该案例中,自由飞行的鸟类在半自然条件下以三种不同的三维复杂度的背景下捕食人工猎物。野生捕食者可靠地参与了这个实验,对人工猎物进行了 11 到 16 代的捕食,并总共遇到了 1296 个进化后的猎物。几代猎物图案的变化表明,与背景的相似性的几个度量标准以及更大的边缘破坏得到了改善,尽管效果大小相对较小。基于计算机的这些试验的复制品,由人类志愿者进行,突出了起始种群参数对后续进化的重要性,这是应用这些方法时的一个关键考虑因素。最终,这些方法为将复杂的遗传算法集成到更自然的捕食试验中提供了途径。可定制的开源工具应该有助于应用这些工具在更具生态相关性的背景下研究广泛的视觉模式类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a99e/11098352/d63e6119cb99/pone.0295106.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验