Suppr超能文献

K 通道在睡眠中的作用。

Functioning of K channels during sleep.

机构信息

Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia.

Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal.

出版信息

Arch Insect Biochem Physiol. 2022 Jun;110(2):e21884. doi: 10.1002/arch.21884. Epub 2022 Mar 21.

Abstract

The functioning of voltage-dependent K channels (Kv) may correlate with the physiological state of brain in organisms, including the sleep in Drosophila. Apparently, all major types of K currents are expressed in CNS of this model organism. These are the Shab-Kv2, Shaker-Kv1, Shal-Kv4, and Shaw-Kv3 α subunits and can be deciphered by patch-clamp technique. Although it is plausible that some of these channels may play a prevailing role in sleep or wakefulness, several of recent data are not conclusive. It needs to be defined that indeed the frequency of action potentials in large ventral lateral pacemaker neurons is either higher or lower during the morning or night because of an increased Kv3 and Kv4 currents, respectively. The outcomes of dynamic-clamp approach in combination with electrophysiology in insects are unreliable in contrast to those in mammalian neurons. Since the addition of virtual Kv conductance during any Zeitgeber time should not significantly alter the resting membrane potential. This review explains the Drosophila sleep behavior based on neural activity with respect to K current-driven action potential rate.

摘要

电压门控钾通道(Kv)的功能可能与生物体大脑的生理状态相关,包括果蝇的睡眠。显然,所有主要类型的 K 电流都在该模式生物的中枢神经系统中表达。这些是 Shab-Kv2、Shaker-Kv1、Shal-Kv4 和 Shaw-Kv3α亚基,可以通过膜片钳技术来破译。尽管这些通道中的一些可能在睡眠或清醒状态中发挥主要作用,但最近的一些数据并不具有结论性。需要明确的是,由于 Kv3 和 Kv4 电流的增加,大型腹外侧起搏器神经元中的动作电位频率在早晨或晚上确实更高或更低。与哺乳动物神经元相比,昆虫的电生理学与动态箝位方法的结合的结果并不可靠。由于在任何 Zeitgeber 时间添加虚拟 Kv 电导不应该显著改变静息膜电位。本综述基于与 K 电流驱动的动作电位率相关的神经活动来解释果蝇的睡眠行为。

相似文献

1
Functioning of K channels during sleep.K 通道在睡眠中的作用。
Arch Insect Biochem Physiol. 2022 Jun;110(2):e21884. doi: 10.1002/arch.21884. Epub 2022 Mar 21.
3
Adam, amigo, brain, and K channel.亚当、朋友、大脑和钾通道。
Biophys Rev. 2023 Nov 6;15(5):1393-1424. doi: 10.1007/s12551-023-01163-5. eCollection 2023 Oct.

本文引用的文献

1
Probability that there is a mammalian counterpart of cardiac clock in insects.昆虫中心脏钟是否存在哺乳动物对应物的概率。
Arch Insect Biochem Physiol. 2022 May;110(1):e21867. doi: 10.1002/arch.21867. Epub 2022 Feb 1.
2
Inactivation of Native K Channels.天然钾通道失活。
J Membr Biol. 2022 Feb;255(1):13-31. doi: 10.1007/s00232-021-00195-w. Epub 2021 Aug 12.
5
Tale of tail current.尾巴电流的故事。
Prog Biophys Mol Biol. 2020 Jan;150:78-97. doi: 10.1016/j.pbiomolbio.2019.06.002. Epub 2019 Jun 22.
8
The neuronal control of cardiac functions in Molluscs.软体动物心脏功能的神经元控制。
Comp Biochem Physiol A Mol Integr Physiol. 2011 Oct;160(2):102-16. doi: 10.1016/j.cbpa.2011.06.014. Epub 2011 Jun 25.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验