Van der Hoeven N
J Math Biol. 1986;24(3):313-25. doi: 10.1007/BF00275640.
A model is formulated to examine the possibility of (co)existence of plasmids of the same incompatibility and surface exclusion group in a bacterial population living under a feast-and-famine regime. The condition is given under which a growth rate decreasing plasmid can invade a bacterial population. It appears that in case only one plasmid type is present, the frequency of plasmid bearers will tend to a stable equilibrium if the food supply at each growth site gets exhausted and if both plasmid-free and plasmid-bearing bacteria need an equal quantity of food per cell division. If these two conditions are not satisfied, the frequency of plasmid-bearers might oscillate. Two plasmids will sometimes be able to coexist, but only if they follow different survival strategies; one with a high conjugational transfer rate and a lower fitness of its host, and the other with a low transfer rate and a higher host fitness. Coexistence of three plasmids of the same surface exclusion group is impossible.
构建了一个模型,以研究在 feast-and-famine 模式下生存的细菌群体中,相同不相容性和表面排斥组的质粒(共)存在的可能性。给出了生长速率降低的质粒能够侵入细菌群体的条件。结果表明,如果每个生长位点的食物供应耗尽,并且无质粒和有质粒的细菌在每次细胞分裂时需要等量的食物,那么在仅存在一种质粒类型的情况下,携带质粒的细菌频率将趋向于稳定平衡。如果这两个条件不满足,携带质粒的细菌频率可能会振荡。两种质粒有时能够共存,但前提是它们遵循不同的生存策略:一种具有高接合转移率但其宿主适应性较低,另一种具有低转移率但宿主适应性较高。同一表面排斥组的三种质粒不可能共存。