Suppr超能文献

胶质细胞中存活运动神经元的破坏会影响存活,但对果蝇的神经肌肉功能没有影响。

Disruption of Survival Motor Neuron in Glia Impacts Survival but has no Effect on Neuromuscular Function in Drosophila.

机构信息

Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta; Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.

Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta; Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.

出版信息

Neuroscience. 2022 May 21;491:32-42. doi: 10.1016/j.neuroscience.2022.03.013. Epub 2022 Mar 21.

Abstract

Increasing evidence points to the involvement of cell types other than motor neurons in both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), the predominant motor neuron disease in adults and infants, respectively. The contribution of glia to ALS pathophysiology is well documented. Studies have since focused on evaluating the contribution of glia in SMA. Here, we made use of the Drosophila model to ask whether the survival motor neuron (Smn) protein, the causative factor for SMA, is required selectively in glia. We show that the specific loss of Smn function in glia during development reduced survival to adulthood but did not affect motoric performance or neuromuscular junction (NMJ) morphology in flies. In contrast, gain rather than loss of ALS-linked TDP-43, FUS or C9orf72 function in glia induced significant defects in motor behaviour in addition to reduced survival. Furthermore, glia-specific gain of TDP-43 function caused both NMJ defects and muscle atrophy. Smn together with Gemins 2-8 and Unrip, form the Smn complex which is indispensable for the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). We show that glial-selective perturbation of Smn complex components or disruption of key snRNP biogenesis factors pICln and Tgs1, induce deleterious effects on adult fly viability but, similar to Smn reduction, had no negative effect on neuromuscular function. Our findings suggest that the role of Smn in snRNP biogenesis as part of the Smn complex is required in glia for the survival of the organism, underscoring the importance of glial cells in SMA disease formation.

摘要

越来越多的证据表明,除运动神经元外,其他细胞类型也参与了肌萎缩侧索硬化症(ALS)和脊髓性肌萎缩症(SMA)的发生,这两种疾病分别是成人和婴儿中主要的运动神经元疾病。神经胶质细胞在 ALS 病理生理学中的作用已得到充分证实。此后,研究集中在评估神经胶质细胞在 SMA 中的作用。在这里,我们利用果蝇模型来研究肌萎缩侧索硬化症的致病因子 Smn 蛋白是否仅在神经胶质细胞中特异性缺失。我们发现,在发育过程中特异性地在神经胶质细胞中丧失 Smn 功能会降低成年后的存活率,但不会影响果蝇的运动表现或神经肌肉接头(NMJ)形态。相比之下,在神经胶质细胞中获得 ALS 相关的 TDP-43、FUS 或 C9orf72 功能,而不是丧失,除了存活率降低外,还会导致运动行为的显著缺陷。此外,神经胶质细胞中特异性获得 TDP-43 功能会导致 NMJ 缺陷和肌肉萎缩。Smn 与 Gemins 2-8 和 Unrip 一起形成 Smn 复合物,该复合物对于剪接体小核核糖核蛋白(snRNP)的组装是必不可少的。我们发现,神经胶质细胞中 Smn 复合物成分的特异性扰动或关键 snRNP 生物发生因子 pICln 和 Tgs1 的破坏,会对成年果蝇的存活率产生有害影响,但与 Smn 减少相似,对神经肌肉功能没有负面影响。我们的研究结果表明,Smn 在 snRNP 生物发生中作为 Smn 复合物的一部分的作用,对于生物体的存活在神经胶质细胞中是必需的,这突显了神经胶质细胞在 SMA 疾病形成中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验