Suppr超能文献

脊髓性肌萎缩症:从snRNP组装的伴侣蛋白缺陷到神经肌肉功能障碍

Spinal Muscular Atrophy: From Defective Chaperoning of snRNP Assembly to Neuromuscular Dysfunction.

作者信息

Lanfranco Maia, Vassallo Neville, Cauchi Ruben J

机构信息

Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta.

Center for Molecular Medicine and Biobanking, University of MaltaMsida, Malta.

出版信息

Front Mol Biosci. 2017 Jun 8;4:41. doi: 10.3389/fmolb.2017.00041. eCollection 2017.

Abstract

Spinal Muscular Atrophy (SMA) is a neuromuscular disorder that results from decreased levels of the survival motor neuron (SMN) protein. SMN is part of a multiprotein complex that also includes Gemins 2-8 and Unrip. The SMN-Gemins complex cooperates with the protein arginine methyltransferase 5 (PRMT5) complex, whose constituents include WD45, PRMT5 and pICln. Both complexes function as molecular chaperones, interacting with and assisting in the assembly of an Sm protein core onto small nuclear RNAs (snRNAs) to generate small nuclear ribonucleoproteins (snRNPs), which are the operating components of the spliceosome. Molecular and structural studies have refined our knowledge of the key events taking place within the crowded environment of cells and the numerous precautions undertaken to ensure the faithful assembly of snRNPs. Nonetheless, it remains unclear whether a loss of chaperoning in snRNP assembly, considered as a "housekeeping" activity, is responsible for the selective neuromuscular phenotype in SMA. This review thus shines light on studies that point toward disturbances in snRNP assembly and the consequential transcriptome abnormalities as the primary drivers of the progressive neuromuscular degeneration underpinning the disease. Disruption of U1 snRNP or snRNP assembly factors other than SMN induces phenotypes that mirror aspects of SMN deficiency, and splicing defects, described in numerous SMA models, can lead to a DNA damage and stress response that compromises the survival of the motor system. Restoring the correct chaperoning of snRNP assembly is therefore predicted to enhance the benefit of SMA therapeutic modalities based on augmenting SMN expression.

摘要

脊髓性肌萎缩症(SMA)是一种神经肌肉疾病,由存活运动神经元(SMN)蛋白水平降低所致。SMN是一种多蛋白复合物的一部分,该复合物还包括Gemins 2 - 8和Unrip。SMN - Gemins复合物与蛋白质精氨酸甲基转移酶5(PRMT5)复合物协同作用,后者的成分包括WD45、PRMT5和pICln。这两种复合物均作为分子伴侣发挥作用,与Sm蛋白核心相互作用并协助其组装到小核RNA(snRNA)上,以生成小核核糖核蛋白(snRNP),而snRNP是剪接体的操作组件。分子和结构研究深化了我们对细胞拥挤环境中发生的关键事件以及为确保snRNP忠实组装而采取的众多预防措施的认识。然而,尚不清楚被视为一种“管家”活动的snRNP组装中伴侣功能的丧失是否是SMA中选择性神经肌肉表型的原因。因此,本综述着重介绍了一些研究,这些研究指出snRNP组装紊乱和随之而来的转录组异常是该疾病所导致的进行性神经肌肉变性的主要驱动因素。U1 snRNP或除SMN之外的snRNP组装因子的破坏会诱导出与SMN缺乏症某些方面相似的表型,并且在众多SMA模型中描述的剪接缺陷可导致DNA损伤和应激反应,从而危及运动系统的存活。因此,预计恢复snRNP组装的正确伴侣功能将增强基于增加SMN表达的SMA治疗方法的疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fe0/5463183/8fbcd97c21b4/fmolb-04-00041-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验