Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta; Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Université Montpellier 1 and 2, Montpellier, France.
Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta.
Neurobiol Dis. 2016 Oct;94:245-58. doi: 10.1016/j.nbd.2016.06.015. Epub 2016 Jul 4.
The neuromuscular disorder, spinal muscular atrophy (SMA), results from insufficient levels of the survival motor neuron (SMN) protein. Together with Gemins 2-8 and Unrip, SMN forms the large macromolecular SMN-Gemins complex, which is known to be indispensable for chaperoning the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). It remains unclear whether disruption of this function is responsible for the selective neuromuscular degeneration in SMA. In the present study, we first show that loss of wmd, the Drosophila Unrip orthologue, has a negative impact on the motor system. However, due to lack of a functional relationship between wmd/Unrip and Gemin3, it is likely that Unrip joined the SMN-Gemins complex only recently in evolution. Second, we uncover that disruption of either Tgs1 or pICln, two cardinal players in snRNP biogenesis, results in viability and motor phenotypes that closely resemble those previously uncovered on loss of the constituent members of the SMN-Gemins complex. Interestingly, overexpression of both factors leads to motor dysfunction in Drosophila, a situation analogous to that of Gemin2. Toxicity is conserved in the yeast S. pombe where pICln overexpression induces a surplus of Sm proteins in the cytoplasm, indicating that a block in snRNP biogenesis is partly responsible for this phenotype. Importantly, we show a strong functional relationship and a physical interaction between Gemin3 and either Tgs1 or pICln. We propose that snRNP biogenesis is the pathway connecting the SMN-Gemins complex to a functional neuromuscular system, and its disturbance most likely leads to the motor dysfunction that is typical in SMA.
神经肌肉疾病脊髓性肌萎缩症(SMA)是由于运动神经元存活(SMN)蛋白水平不足引起的。SMN 与 Gemins2-8 和 Unrip 一起形成大型大分子 SMN-Gemin 复合物,该复合物对于协助剪接体小核核糖核蛋白(snRNP)的组装是必不可少的。目前尚不清楚这种功能的破坏是否是 SMA 中选择性神经肌肉退化的原因。在本研究中,我们首先表明,果蝇 Unrip 同源物 wmd 的缺失对运动系统有负面影响。然而,由于 wmd/Unrip 和 Gemin3 之间缺乏功能关系,很可能 Unrip 是在进化过程中最近才加入 SMN-Gemin 复合物的。其次,我们发现破坏 Tgs1 或 pICln 这两种 snRNP 生物发生的关键因子,会导致存活能力和运动表型与之前发现的 SMN-Gemin 复合物组成成员缺失非常相似。有趣的是,这两种因子的过表达都会导致果蝇的运动功能障碍,这种情况类似于 Gemin2 的情况。在酵母 S. pombe 中,毒性是保守的,pICln 的过表达导致细胞质中 Sm 蛋白过剩,表明 snRNP 生物发生受阻是这种表型的部分原因。重要的是,我们显示 Gemin3 与 Tgs1 或 pICln 之间存在很强的功能关系和物理相互作用。我们提出,snRNP 生物发生是将 SMN-Gemin 复合物连接到功能性神经肌肉系统的途径,其干扰很可能导致 SMA 中典型的运动功能障碍。